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1. INTRODCION

1.1 Literature on Point Processes

Point processes are models of random numbers of events in time intervals

or numbers of points in regions. Here are some typical families of examples.

Times at which an event occurs: Times of births, police emergencies,

failures of a machine, insurance claims, or earthquakes.

Random flows or streams of items: Times at which items enter or leave a

certain place such as telephone calls arriving to a switching center, data

packets entering a computer. parts leaving a manufacturing work station, and

cajh flows in a company.

Random locations of points in an Euclidean space: Galaxies in space, errors

in a computer code, animals in a forest, aircraft over a city.

Times of special events in a stochastic process: The instants when a

Gaussian process crosses a certain level or when a pure-jump Markov process

makes a certain type of transition.

Random locations of elements in an abstract set: One can talk of a point

process in which the points are functions in a space of functions, lines in a

set of lines on the plane, graphs in a set of graphs. etc.

Although the theory of point processes has been developed only recently,

its origins go back several centuries. Here are its major roots.

Poisson Phenomena. Poisson (1837) showed that the Poisson distribution is

the limit of a binomial distribution of rare events. This led to numerous

applications of the Poisson distribution in the nineteenth century and the

eventual development of the Poisson process, which is the paramount point

process. Two notable Poisson applications, before the modern era of

probability, were Erlang's (1909) model of telephone calls to a trunk line

Ir ., V*%J .4
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and Bateman's (1910) model of a-particles emitted from a radioactive

subs tance.

Life-Tables. Systems Reliability and Renewal Phenomena. The numerous studies

of mortality based on life-tables from Graunt (1662) to Lotka (1939). and

related studies in this century. such as Weibull's (1939) study of system

lifetimes, were the precursors of renewal processes.

Queueing in Telecommunications. Palm's (1943) pioneering work on queueing in

telecommunications and Khinchine's (1960) mathematical foundations of

queueing processes showed the significance of modeling the flow of customers

into a service station as a point process. This highlighted the need to

develop point processes of event occurrences other than Poisson or renewal

processes.

Statistical Mechanics. Gibbs: (1902) fundamental work on statistical

mechanics was a mjor catalyst for developing point processes in spaces other

than the real line and with Interactions among the points.

Most of the theory of point processes has been developed in the last 30

years. The standard families of point processes are: (1) Poisson, compound

Poisson and Cox processes. (2) Infinitely divisible and independent

increment point processes. (3) Renewal processes and processes defined by

interval properties. (4) Stationary point processes. (5) Marked point

processes, which are associated with each of the other families. (6) Point

processes related to Martingale theory and stochastic calculus.

In this chapter, I shall describe the structure of most of these

processes and discuss some of their basic properties. The coverage does not

include several important topics requiring lengthy mathematical development

(e.g. martingale theory of point processes, general Palm probabilities, and

4V we 0 % j P*%
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ergodic and spectral analysis of stationary processes). The emphasis will be

on presenting tools for modeling stochastic systems rather than on

applications of the tools. Although the theory of point processes is

intimately connected with the subject of measure and integration (a point

process is a random counting measure). I shall focus on results that can be

understood without a deep knowledge of measure theory. On the other hand.

the presentation will be rigorous and at the level of the applied probability

literature that one would encounter in studying point processes.

The standard books and survey articles on point processes are as

follows. Introductory works with a fairly broad coverage are Daley and

Vere-Jones (1972) and Cox and Isham (1980). One can obtain a gaod

introduction to point processes by reading these along with Cox and Lewis

(1966). Grandell (1976.1977)..Snyder (1975). Jagers (1972). Karr (1986.

Chapters 1.2) and selected articles in Lewis (1972). The forthcoming book by

Iley and Vere-Jones (1988) gives a detailed introduction and more

comprehensive development of the theory. The most recent and rather complete

research monograph on the mathematical theory of point processes and random

measures is Kallenberg (1983).

In addition. there are a number of books on special topics. Feller

(1971). Cinlar (1975). Gut and Prabhu (1987) and standard introductory texts

on stochastic processes provide a good coverage of renewal processes.

Khintchine (1960). Cramerr and Leadbetter (1967). Franken. Kanig. et al.

(1981). Rolski (1981). Baccelli and Br6maud (1986), and Neveu (1977) are

studies of stationary point processes and queueing (also see Bartfai and

Tomk6 (1981)). Matthes. Kerstan and Mecke (1978) discuss infinitely

v%
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divisible point processes. The martingale approach to point processes

appears in Brdmaud (1981). Liptser and Shiryayev (1978'. Ikeda and Watanabe

(1981). and Elliott (1982). Also. Ripley (1981). Jacobsen (1982) and Karr

(1986) study statistical inference and prediction problems of point

processes.

Other subjects related to point processes are random sets (Kendall

(1974). Matheron (1975) and Ripley (1976)), systems of interacting particles

(Liggett (1985)). random fields (Kinderman and Snell (1980) and Rozanov

(1980)). percolation processes (Kesten (1982)). and extreme value theory

(Leadbetter. Lindgren and Rootz&n (1983)).

To see what topics lie ahead, consult the table of contents. Most of

the results herein are proved and developed further in Cox and Isham (1980).

[aley and Vere-Jones (1988). Feller (1971). and Kallenberg (1983). The other

references I cite are for particular points. For a complete set of

references and a chronology of the development of point processes, see these

books and also Karr (1986).

1.2 Definition of a Point Process

The classical definition of a point process on R+ [0.-) is as follows.

Suppose that T.T 2 .... are random variables on a probability space

representing locations of points on R+. such as the successive times at which

an event occurs. Assume that 0 < T _ T2 _... and T -. m a.s. (almost

surely). Then the number of points or event occurrences in the interval

[0.t] is given by

N = l(T < t)

n=l

where I(A) is the indicator of A (it is one on A and zero elsewhere). The

SIC



counting process {Nt; t 0). or the sequence (Tn n=l,2.... is called a

point process on R+.

This definition is adequate for many applications. However. a more

general definition is required for (i) modeling point processes with a

finite, random number of points (the process above has an infinite number).

(ii) defining point processes on general spaces, and (iii) characterizing the

probability law of a counting process directly without reference to its point

locations. The characterization in (iii) is needed for analyzing sums

(superpositions) and other operations on processes, studying the convergence

of processes, comparing processes via order relations, and even constructing

approximations.

We shall adopt the following definition of a point process. We let E

denote the space in which the.points lie. For our purposes, we assume that E

is an Euclidean space (e.g. R+. R d . [a.b]. a countable set), or a product of

these (e.g. R+ x C. Rd x C). The E could also be a more general topological

space, see Kallenberg (1983). We distinguish three kinds of subsets of E:

the class J' of all intervals or rectangles in E of the form (a.b] = (xEE:

a < x ( b coordinatewise}. the class 9 of Borel sets of E (those formed from

countable unions and intersections of sets in 1I), and the class I* of bounded

Borel sets (a set is bounded if it is contained in a finite interval). As

usual, all functions herein are assumed to be measurable (f: E - R is

measurable if {x: f(x) a) E 9) for each a E R).

Definition 1.1. A point process N on E is a collection of non-negative

integer-valued random variables N = {N(A): AEg) on a probability space that

take values in {0.. and satisfy the following conditions:

(i) N(#)=O and N(B) < - a.s. for each BEMA.

(ii) N(U Bn) = N(Bn) a.s. for any disjoint BI.B 2 .. in 'R.
n n

The random variable N(A) represents the number of points in the set A.
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A more formal but equivalent definition is as follows. A counting

measure on E is a mapping pi from 9 to (0.. such -that 0;() = 0;

p(B) < -. B C 1; and p(U Bn) = p 1(Bn) for disjoint B1 B2 ... in . Let Ii
n n

denote the set of all such counting measures. Note that the defining

conditions (i). (ii) above for N simply say that almost every realization of

N is a counting measure on E (i.e. an element of A). This leads to the

following definition.

I finitioni 1.1. A point process on E is a measurable mapping N from a

probability space to A.

We shall also use non-integer valued random measures. A random measure

A on E is a collection A = {A(A): AEE) of non-negative random variables

satisfying conditions (i) and (ii).

Suppose that N is a point process on E. Then there exist random

variables X F X 2.. with values in E and a random variable v with values in

(0.1... such that

N(A) = 2 6X (A). AE9,
n=l n

where 6 x(B) = l(xEB) is the Dirac measure with unit mass at x. The X 'sx n

represent the locations of the points and v = N(E) is the total number of

points. We denote this representation by N = =l 6 . We also let N(a.b]
n

denote N((a.b]).

Note that there are at most a finite number of X 's in a bounded set.
n

and the subscripts on the X 's may not be unique. Also. N may have severaln

points at one location. When N((x}) = 0 a.s. for each xCE. then we say N is

simple (a sufficient condition for this is in Lemma 1.7). If N is not

simple, then we can write
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I)

N(A)- =I Zn (A)

n=l X'n

where X'.X .... are distinct point locations. Z = N((X*}) is the number of
1 2 n n

points at X and v' is the number of point locations.
n

When N is a point process on E=R+. it is standard to use T 's instead ofn

X 's and subscript them such that 0 < T0 < T ( ...a.s. Such a process is

often used to model the occurrences of an event with T being the time of then

n-th occurrence. Because of the total ordering of R+. and hence of the Tn s,

the theory of N is equivalent to that of the increasing stochastic process

N t = N[O.t], t > 0.

(i.e. each N(B) can be expressed in terms of N t s). Similarly, for N on E=R.

the standard representation is
T_ T_ ( T 0(T <T <.

2 1 0- 1- 2-

V2

N(A) = 2 6T (A). ACE.
n=-v) n

and the associated increasing process is

{N(O.t] t > 0Nt= -N(t.O] t < 0.

dFor E = R . there is no standard ordering of the X 's, but the lastn

increasing process is still well defined (here tER d and (a.b]E 'I').

The moments of a point process N on E are as follows (the expectations

below may be +- except when w -- is encountered):

The mean measure (or intensity measure) of N is p(A) = EN(A). ACE. These

measures also arise in expectations of integrals with respect to N (Renark

1.5).

The k-th moment measure of N is

J1k(Alxx---Ak) E[N(A,)---N(Ak)]. A1 ..... Ak in 9

%-



The covariance measure of N is

Cov(N(A). N(B)) E- p 2 (AxB) - j(A)pi(B). ABE9.

The k-th factorial moment measure of N is

II~k) (A) EEE[N(A) (k)] AEff. where n (k) = n(n-1)...(n-k). and

I k)A I* k .Xr ) FNA(k 1) (kd]
(Akr.A) L(l) ***N(Ar) r] A . Ar disjoint in 9

and k .- k r = k. This uniquely defines II(k) (B) for each BE9k. The

difference between P(k) and p1k is easy to see for k=2:

P (Ax kji2 (AxB) - ii(AflB). A.B E9

Also, if pkhas a density fk E k-+ R +so that

then. in comparison.

where A' = ((x l...x k ) EA: xl1 . 'Xk are distinct}. The moment measures

yield infinitesimal probabilities in the usual manner: When pkhas the

density f k' then for distinct x - xk

P(N(x 1 x 1+dx1] N .... (xk'xk +dxk] = 1) = fk(x... ...x k)dxl.-dk

1-3 Distributions and Laplace Functionrals of Point Processes

The distribution or probability law of a point process N on E is

uniquely determined by the joint distribut ion of N(B I)..N(B n), for each n

and disjoint B......R Bn in ?A (called the finite dimensional distributions of

N). The following is an elaboration on this. We use d to mnean equal in

distribution.

V

Remarks 1.2. Let N 2 6 xand N' 2 " 6 X, be point processes on E (they
n-l n n=l n

may be defined on separate probability spaces).

% % % % %
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(a) N d N' if and only if (N(II)...N(I)) d (N.(Il)......N'(I)) for each n

and disjointI *...... in When E C R. this condit4on is equivalent (in

terms of increasing processes) to (N N = (N...... .t
t - t t t 1-...1 n I n

t
n

(b) When N and N' are simple, then N = N' if and only if P(N(B) = 0) =

P(N'(B) = 0). B E o.

(C) If (v.X1 X2 ....) (v.Xi.X .. ). then N d N'. The converse is true

when E = R+ or R and the X 's are the ordered T 's.+ n n

The distribution of a point process is also uniquely determined by its

Laplace functional as follows. We shall denote Lebesgue integrals as

fEf(x)tI(dx). as opposed to fE f(x)du(x). and we sometimes omit the E.

Readers unfamiliar with these integrals can interpret them as Riemann

integrals ff(x)#(x)dx. where j is the density of p (symbolically p(dx) =

O(x)dx). These integrals also make sense when f or p are random. An example

is

I f(x)N(dx) = I f(Xn), when N = 2 6x
E n=l n=l n

Definition 1.3. The Laplace functional of a point process N on E is

LN(f) E{exp[-f f(x)N(dx)]). where f: E- R .
E +

This is analogous to a Laplace transform E(e- tZ ) of a non-negative

random variable Z. We first note that the joint Laplace transform of

N(AI).....N(An). for A .. An in 9, is contained in L Indeed, consider
n

the simple function f(x) = 2- tkl(xEAk). Then

n

k=l

Thus, LN uniquely determines the joint distribution of N(A).....N(An), and

,.

, -- - j ~ . ' ' . _ ' . € - " " " . """?V .""" " " " " € " • " - " • " * "i
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so LN also uniquely determines the distribution of N. This. and a

characterization of N via integrals are the subject of -he next result. We

let CK denote the set of functions f:E -+ R+ that are continuous and such that

(x: f(x)>O) is a bounded set.

Theorem 1.4. Suppose N and N' are point processes on E. The following

statements are equivalent: (i) N I N •. (ii) LN(f) = LN.(f)• f E CK.

d
(iii) f f(x)N(dx) = f f(x)N'(dx). f E cK .

Remark 1.5. Integrals of the form fA f(x)N(dx), where A E 9 and f: E -+R.

are important in applications as well as in theoretical statements such as

Theorem 1.4. A frequently used formula is

E[IA f(x)N(dx)] = 'A f(x)p(dx),

where pi is the mean measure of N, provided the integral exists. This is

proved by verifying it for simple functions and then limits of simple

functions (as in the proof of Proposition 1.9).

The uses of Laplace functionals are similar to those of Laplace

transforms. For example. moments of N(AI).....N(Ak) can be obtained from

derivatives of (1.1). As another example, suppose N1... Nk are point

processes on E. Then their sum or superposition N=N I +...+Nn is also a point

process (regardless of the dependency among the Nk's). Now. if N I,-, Nn are

independent, then the Laplace transform of N has the product form

n n
LN(f) = E{exp[- 2 f f(x)Nk(dx)]) = 1T LN (f).

k=l k=l k

which is sometimes convenient for obtaining the distribution of N.

1.4 Basic Examples: Poisson. Renewal and Stationary Processes

Point processes are commonly classified by their distributions (e.g. a

compound Poisson process) or by a certain characteristic (e.g. a stationary

g . s . A .. ... * %%..* . . -. . .. ?.. ..... ..... '. ...:72?'37'-/,i
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point process). They may also be classified by how they arise as a function

of another process (e.g. the times when customers exit a network of service

systems), by the mathematical techniques involved in their analysis, or by

their application context. We now introduce several basic processes.

Suppose N is a point process on E. We say that N has independent

increments if N(BI),....N(Bn ) are independent for any disjoint B1 ..... Bn in A

(we discuss these processes in S 3.3). We say that N is a stationary point

process on E C Rd (or has stationary increments) if, for each B1 ..... Bn in 1.

(N(BI+x)N.....N(Bn +x)) I (N(BI)...N(Bn)). x E E.

Here B + x = (y + x: y C B). Stationary processes are the subject of § 5.

The most important point process is the Poisson process.

Definition 1.6. A point process N on E is a Poisson process with mean

measure A if N has independent increments and, for each B E A.

P(N(B) = n) = A(B)ke-A(B)/n!. n=O.l ....

(This probability statement also holds for each B in the larger classs 9.

with N(B) = 0 or - a.s. when A(B) = 0 or -. respectively.) We call N a

stationary Poisson process with rate X when A(dx) = Xdx for some X > 0 and E

C Rd (the general process is sometimes called non-stationary or

non-homogeneous).

A common assumption for a Poisson process N (or any point process) is

that its mean A takes the form A(A) = 'A X dx' or A(dx) = X dx: this X isx x

sometimes called the rate or intensity of N. Note that N is simple if and

only if A((x)) = 0 (which is true when A has the preceding form). In

general, when A({x}) > 0. then N({x}) is Poisson with that mean.

The prominance of Weiner and more general Gaussian processes is due

primarily to the central limit phenomenon that these processes arise as

limits of processes of sums of random variables (see for instance Billingsley
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(1968)). Similarly, the prominance of Poisson processes stems from the

property that they arise as limits of sums of uniformly'sparce point

processes (see Theorem 3.4). They also arise as limits of processes of rare

events (see Theorem 3.7). Many actual point processes can indeed be viewed

as superpositions of points from many sources or as processes of rare events.

In addition. Poisson processes are building blocks For more complicated

processes.

There are a number of characterizations of Poisson processes. The

following one is based on the null probabilities P(N(A) = 0). We first

present a sufficient condition for simplicity (see p. 203 of Jagers (1972)

for the proof).

Lema 1.7. Suppose N is a point process on E and there is a measure A on E

such that A({x)) = 0. x E E and P(N(B) > 2) = o(A(B)) as A(B) -+ 0. Then N is

simple.

Proposition 1.8. Suppose N is a point process on E that satisfies the

hypothesis of Lemma 1.7 and P{N(B) 0) = e-(B) B E i. Then N is a Poisson

process with mean measure A.
s,

Proof. By Lemma 1.7. N is simple and so by Remark 1.2(b). the distribution

of N is uniquely determined by the null probabilities P(N(B) = 0). But

these, by assumption, are those of a Poisson process with mean A.

The next result gives an expression for the Laplace functional of

Poisson processes. The proof demonstrates a common approach for deriving

Laplace functionals in general. We shall return to Poisson processes in the

next section.

Proposition 1.9. If N is a Poisson process with mean measure A then

LN(f) = exp[-f(l-e-f(x))A(dx)].

.S-.r'
5
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Proof. Denote the right side by G(f). First. consider the simple function

n
f(x) = I tkl(xEBk), where Bl,....B n are disjoint in 4' Since

k=l

N(BI).....N(Bn ) are independent Poisson variables.

n n -tkN(1 I.k)
LN(f) = E{exp[- I tkN(Bk)]) = IT E[e ]

k=l k=1
n -tk
I T exp[-A(B k)( I-e )] Gf).

k= I

Next, consider a function f such that {x: f(x) > 0) E !. We can write f(x) =

lir f (x). x C E. where the f 's are simple functions as above. Then by two
___ n n

applications of the dominated convergence theorem and the preceding result.

we have

LN(f) = lim L,(fn) = im G(fn) = G(f).n-40n-

Finally, consider any functioR f. and let B be a sequence in M such that
n

Bn T E. Define fn(X) = f(x)l(xEB ), and so {x: f (x) > 0) C A. Then the

preceding equalities hold by two applications of the monotone convergence

theorem.

For point processes on R+ or R. it is common to specify their

distributions by specifying the distributions of their point locations or

their inter-point distances. The primary excmple is the renewal process.

Definition 1.10. Let N = 1 6T  be a point process on R +. and let WI = TI
n=l n

and Wn = Tn - Tn-l n=2.3.... The N is a renewal process with waiting time

distribution F if W1 .W2 -.... are independent and each one has the distribution

F. For simplicity, we assume that F(O) = 0. and so N is simple. We call

T 1 < T2 < ... the renewal times of N and Wl, W .... the waiting times between

renewal s.

%~, 4 .
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Remark 1.11. The distribution of a renewal process is uniquely determined by

its waiting time distribution. To see this, suppose N and N' are two renewal

processes. By Remark 1.2(c) we know that N d N' if and only if (T 1 T2 .... ) d

( " T2 ).But telatter is equivalent to(WlW2,.)d(,2..
. .... . ) which

d
is equivalent to F = F'. Thus N = N' if and only if F = F'. This uniqueness

property is used, for instance, in stochastic comparisons or convergence

results.

Although renewal processes have a simple structure, their Laplace

functionals generally do not. We shall continue our discussion of renewal

processes in §4.

1.5 Marked and Compound Point Processes

In addition to their locations, the points of a point process may have

distinguishing attributes or attendant information, which are commonly called

marks. The standard way of modeling marks is as follows.

V
Consider a point process N = I 6 on E. Suppose that associated

n=lI n

with the point at X (n < v) there is a mark Z that takes values in some
n n

space E'. Then the point process M on ExE' defined by

V

M(AxA') = I I(X n  A. Zn c A'). AxA' C 9x9'
n=l

represents the marks as well as the point locations.

Before we formalize this notion of marked point processes, consider the

special case in which the marks Zn are conditionally independent given N and

a mark for a point at x has the conditional distribution K(x.dz) (often

called a kernel); that is. for A An in 9'.

n

P.Z E A E..... n v > n) K(X..A.).
jl 

,
i5.

q
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In other words, the mark Zn at Xn = x, when u _> n. depends on N only through

x. Then the Laplace functional of 4 is as follows.

Lena 1.12. For f: E x E' -R+.

LM(f) = LN(g).

where g(x) = -log fE, e-f(xz)Kx.dz).

Proof. Since the Z 's are conditionally independent given N. thereforen

LM4(f) = E{E[exp(- I f(X n.Z n))IN])
n= n

= E{nrr= Ee {Z N. ii _ n]}

= Elexp I gn)) L N(g ) .
= Eex[~n=l n

We are now ready for our definition.

Definition 1.13. Suppose N is a point process on E and 4 is a point process

on E x E' such that N(A) = M(AxE'), A E 9. We call 4 a marked point process

of N. Furthermore, we say that M has location-dependent marks with

distributio, K(x,dz) if the Laplace functional of M is as in Lemma 1.12.

Keep in mind that a typical representation of a marked point process is

o V
4 =. 1 6XnZ where N = 2 6 X If M has location-dependent marks ,i

n=l n' n n=l n

distribution K(x.dz). then the mean measure of 4 is (recall Remark 1.5).

E[M4(AxA')] = E(E[M(AxA')IN]) = E{fAK(x.A ')N(dx)) = A K(x.A')p(dx),

where p is the mean measure of N. That is, EM(dxdz) = K(x.dz)p(dx).

Moreover. for f: ExE' - R.

E[fA fA' f(x.z)M(dxdz)] = 'A fA' f(x.z)K(x.dz)p(dx).

'. 1 . J

% N'%
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If N is a point process on R+ with marks that are real-valued (or are

vectors or elements of a semigroup). then these marks are often modeled by

the cumulative process

Z(t) = Zn I(Tn < t). tER+.
n=1

Alternate representations are

Nt

Z(t) = ft f z M(dxdz)= Zn.
0 E' n=l

This process provides the same information as the marked process M.

Example 1.14 Marks as Functiomls of a Stochastic Process. Suppose Y = (Yt

t 0) is a real-valued regenerative process over the times 0 < T < T2 <...

(see S 4.1). A typical mark of T might be the discounted costn

T
n --at

Zn = fT e c(Yt)dt.n-

where c(y) is the cost per unit time of Y being in state y. Then the

cumulative process
Nt  TN

Z(t) = I Z = f e-as C(Ys)ds
n=l 0

is the discounted cost in the interval [O,TN ]. This and a variety of other
t

marks are functionals of the form

Z = #(T 1' Tn' (Yt t(Tn-l'Tn]}).

Another example is
Zn  Ma x{Yt: tE(Tn-l.Tn]).

In situations where points occur in batches, an appropriate model might

be a compound point process defined as follows.

Definition 1.15. Suppose N is a point process on E and M is a marked point

process of N on Ex{0.l... } with location-dependent marks having distribution

K(x.dz). The point process

p -i e % %
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V

N'(A) Ef f z M(dxdz) = 2 Z 6x (A). AE9,
A E' n=l n

n

is a compound point process of N with mass distribution K(x.dz). The term

compound has traditionally been used only for location-independent marks

where the Z 's are independent of N. For instance, when N is a Poissonn

process with mean A and K(x.dz) = F(dz) independent of x. then N' is a

compound Poisson process whose points have the mean measure A and mass

distribution F. (This N' is a compound Poisson random measure when the Z 'sn

are real-valued instead of integer-valued.)

Similar to Lemmna 1.12. the Laplace functional of the compound point

process N' is

LO f ) = LN(h ) .  where h(x) = - log 2 e-Zf(X)K(x.{zj).
z=O

and that for the compound Poisson process N' is

(1.2) LN.(f) = exp -fE 2 (1 - e-Zf{)A(dx)F{z).
z--O

I-

V9

It
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2. POISSON PROCESSES AND SOME RELATIVES

In this section. we characterize the structure of Poisson processes and

discuss several operations on them including sums. partitions, thinnings and

translations. We also give brief descriptions of sample processes. Cox

processes, negative binomial processes and cluster processes.

2.1 Characterization of Poisson Processes

The following results show how the distributions of the counting

variables for a Poisson process determine the distributions of its point

locations. Stationary Poisson processes on R+ or R are especially nice.

Theorem 2.1. Suppose N is a stationary Poisson process on R+ with rate A.

Then the interpoint distances WI. W2.... are independent exponentially

-l ndistributed with mean X and-the location of the nth point T = n W has a
n k=lk

gamma distribution with order n and scale parameter X.

Proof. By the definition of a Poisson process. it follows that. for each n

and t > 0.

P{ n+1 > tIW1 ..... Wn} = P{N(T nTn+t] = O T. N(B). BC(O.Tn]}

= P{N[(O.t] =O} =e t

Using this in an induction argument proves the assertion about the W 's. The
n

gamma distribution of T is a standard consequence.
n

The preceding result and Remark 1.12(c) yield the following

characterization: A renewal process is a Poisson process if and only if its

waiting time distribution is exponential.

The next result characterizes the point locations of Poisson processes

on general spaces.

-7.-I * - - p 1
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Theorem 2.2. A point process N on E is a Poisson process with mean measure A

if and only if. for each B E B. the process N on B is equal in distribution

to a point process N' = IV= 6 on B, where v,U .... are independent
n

random variables such that v has a Poisson distribution with mean A(B) and

each U takes values in B and has the distribution
n

F(A) = A(A)/A(B). ACB.

Proof. It suffices, by Theorem 1.4. to show that N' has the Poissnn Laplace

functional shown in Proposition 1.9. But this follows since, by the

properties of vU VU .... we have

FV
LN.(f) = E(E{exp[- I f(Un)]lv}) = E([J e - f(x) F(dx)]V)

n=l

= exp{-A(B)[l-f e-f(x)F(dx)]} = exp[-f(l-e-f(x))A(dx)].

This result says that on a bounded set B. the Poisson number of points

N(B) are located as a random sample U1 ,U2 .... from the distribution F. This

characterization is useful for deciding whether a Poisson process is an

appropriate model for a certain phenomenon. It is also useful for

applications: note, for instance, that 'B f(x)N(dx) q

n= 1

Remrk 2.3. For a point process on R+. the preceding result is usually

expressed as follows. Suppose that N is a Poisson process on R+ with mean A

and point locations 0 < T I_. T2  ... Then. for a given t > 0. the

conditional distribution of T .... Tn given N, = n is equal to the

distribution of the order statistics U(I) ( U(2) _ ... _ U(n) of U1 .... Un

that are independent with distribution F(s) = A /A . 0 < s t. That is, for

0 < t < u I  < .. < tn < un < t.

1n n

I
I



20

(2.1) P{T 1 E (t.Ul]...Tn E (tn.un] Nt=n}

n!(At A u )..(At - u )
"

n n n

When A, = fO Xsds. this distribution has the density

..... Tn .....IN,=n(t t n W) = n! - X /A(t)

For the special case when N is stationary with rate X. then U *..... U aren

uniformly distributed on [O.t]. and the last conditional density reduces to

n!/tn.

Another immediate consequence of Theorem 2.2 is as follows. Suppose N

is a Poisson process on E with mean A. Then for each n, B E B. disjoint

A I  Ak in A and nI+...+nk = n.

n! n I  nk
(2.2) P(N(Al) = n, .... N(Ak= nkIN(B) = n} = ...nk) kn I !... n nk  Pl """ k

where pi = A(Ai)/A(B). This is the multinomial probability that n1,..... nk

points in the sample U ..... Un fall in the respectivr sets A,.....Ak where

pi = P(Um E A i).

2.2 Sample Processes

The order statistic property of Poisson processes in Theorem 2.2 is

characteristic of the following important family of finite point processes.

Suppose X X are independent random variables that take values in E

and each one has the distribution F. Then N = k=I 6X is a point process on

E with

LN(f) = E Iexp[ f(Xk) = E e-f(x)F(dx)]
k! l

% % % % %
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Any point process on E that is equal in distribution to N (or has the

preceding Laplace functional) is called a sample process on E with mean

measure nF. Now, suppose v is a non-negative integer-valued random variable

independent of N. Then N' = v 6 is a point process on E with
k=1 k

LN.(f) = G(f E e-f(x)F(d,)), where G(s) = E(s").

Any point process on E that is equal in distribution to N' is called a mixed

sample process with mean measure EvF (N' is N with v randomized and hence is

a mixture of N).

Example 2.4. A Dispatching Model. Suppose that a random number v of items

(e.g. parts or data packets) arrive at a station in a fixed time interval

[O.T]. The times at which the items arrive are independent with distributin

F, and are independent of v. At fixed times 0 = t0 < tI <...< tn T. the

accumulated items are instantaneously dispatched from the station. Then the

total waiting time of the items at the station up to time 'T is

n-I tk+l
W(t1 ..... t ) a 7, ft N(tk, tk + u]du,

n k=O

where N is the mixed sample process defined above. Note that

n=l tk+l
EW(t ..... t )= Ev I ftk [F(tk+u) - F(tk)]du

(the expectation can be taken inside the integral by Fubini's theorem). This

expression can be used to optimize the dispatch times t ..... t and then

number n of dispatches as well. For instance, if there is a cost c for each

dispatch and a cost h per unit time for holding each item. then the problem

is

min {cn + hE[W(t 1 1 .. . t .
nt t

For the case in which N is a stationary Poisson process with rate X. one can

•""-ar .m d" ," ° . ." . w" -" " " -" -' " -" " ' ." " " "" -" " •"'."" " " " ' ', '% -- - " d' ' ' -
'
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show by a calculus argument that the optimal n is one of the integers

adjacent to T(hA/2c) 1/ 2 and the optimal tk = KT/n* (equally spaced times).

Example 2.5. Discounted Costs. Suppose N = V 6 is a point process of
n=l T

n
times in a period [O.T] at which a company incurs costs Z ..... Z . Then the

discounted cost up to time t is

N
t -aT n

C = Y Z e 0 < t < T.t n
n= 1

Suppose N is a mixed sample process as above and Z1,Z2 .... are independent

with distribution G and are independent of N. Let M = v 6 Clearly.n=l T Zn n

EM(dtdz) = EvF(dt)G(dz). Then

EC = E fR zea M(dsdz)

EZIEv ft e-" F(ds).

For the special case in which N is a stationary Poisson process with rate A.

so that F(dt) = T- dt and Ev = AT. then EC, = (N/a) EZ (I-e-a t

2.3 Sums, Partitions. Thinnings and Translations of Poisson Processes

Some standard operations on point processes are summing of processes.

partitioning a process into several subprocesses. thinning (deleting) points

in a process, and translating the points in a process. We shall now discuss

these operations for Poisson processes.

We first observe that a sum of independent Poisson processes is also

Poisson.

Theorem 2.6. If N .. N are independent Poisson processes on E with
I' n*' n

respective mean measures A ... An. then N = N +...+N is a Poisson process
I. n 1.* n

with mean measure A A 1I+...+A

%~ n%I
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Proof. This follows immediately from the defining properties of a Poisson

process. Another approach is to observe that

n n
LN(f) = T LN (f) = 1e [ f(le-f(x))Ak(dx)

k=1 k k=1

= exo[ fI-lef(X)A(dx)l

This result extends to infinite sums N = 2 Nk when A(B) < for B E B.
k=O

It also holds for other families of processes including stationary. Cox

(§2.4). infinitely divisible and independent increment processes (§ 3.3). and

mixed sample processes with a common sample distribution. On the other hand.

it does not hold for renewal processes or stationary interval processes

(§ 4.5).

A large class of marked point processes of Poisson processes are also

Poisson.

Proposition 2.7. Suppose N is a Poisson process on E with mean A and M is a

marked point process of N on E x E' with position-dependent marks having

distribution K(x.dz). Then M is a Poisson process with mean measure

A(dx)K(x.dz).

Proof. This follows since Proposition 1.9 and Lemma 1.12 yield

LM(f) = L.N(g) =exp,[ - f(l-e-g(x))A(dx)]I

= exp - fExE.(U - ef(xz)) A(dx)K(x.dz)

We now discuss partitions and thinnings of a point process N on E. By a

partition of N we mean any collection of point processes N ..... Nn on E such

that N = NI+... N Typically. N is a "parent" process and each of its

points is assigned randomly, by some rule, to one of the subprocesses

%I
ON, 0- %~
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N1 ..... N . There is a one-to-one correspondence between partitions N 1 - .Nn 1..' n

of N and marked point processes M of N on Ex{l.....n}: namely.

Nk(A) a M(Ax{k}) = I l(Xn EA. Z n=k). AEE, k=l,....n.
n=l

The mark Z indicates the subprocess to which the point at X is assigned.n n I'

As an example, suppose XI < X2 ( ... are times at which data packets enter a

computer data base consisting of n files and Z1.Z 2 .... are the respective

files to which the packets are sent. Then Nk models the number of packets

entering file k over time. Analogous partitions depict multiple customer

flows in queueing networks, part flows in manufacturing systems, and demand

occurrences in economic markets. In some cases the partitioning rule is

implicit: If each point of N has one of n attributes, then N .... N can

serve as models of the numbers of points with these respective attributes. ",

The notion of thinning of the point process N refers to the operation of

randomly deleting some of its points. In general, a point process N' on E

such that N'(A) ( N(A). A C E, is called a thinning of N (N' is a thinner

version of N). Any subprocess in a partition of N is a thinning of N.

We shall consider the following basic partitions and thinnings. We say

that N N is a partition of N based on the probabilities Pl(x). ..p (x)
n

if a point of N at x is assigned to subprocess Nk with probability Pk(x)

independent of everything else (i.e. ZIFZ 2 '.... are position-dependent with

distribution pk(t) = P(Zn=k 1 Xn=X. nv} . Similarly, we say that N' is a

p(x) - thinning of N if a point of N at x is retained (assigned to N') with

probability p(x) independent of everything else.

Theorem 2.8. Suppose N is a Poisson process on F with mean A. If N .N
1'~ n

is a partition of N based on the probabilities pl(x).....Pn(X), then

N .N n are independent Poisson processes with respective mean measures

n% • .5-%
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pl(x)A(dx)..... Pn(x)A(dx). Hence. if N' is a p(x)-thinning of N. than N' is

a Poisson process with mean measure p(x)A(dx). "

Proof. Let M be the marked point process on E x (I.....n} such that

Nk(A) = M(A x (k)). Since N is Poisson. Proposition 2.7 implies that M is

also Poisson with mean EM(dx x {k)) = pk(X)A(dx). Thus each Nk is Poisson

with mean pk(x)A(dx). Moreover. N ..... N are independent since they are the

restriction of the Poisson process M to the disjoint sets E x (1)....,E xn}.

respectively.

Example 2.9. Non-stationary Poisson Processes as Time Transformations or

Thinnings of Stationary Processes. Let N be a Poisson process on R+ with

mean A, = ft X ds. Let N be a stationary Poisson process on R with rate 1.
0s +

and let N1o A denote the point process on R+ defined by N1o A(ab] 
=

NI(AaAb], a < b. Clearly NlO A has independent increments and N1o At is

Poisson with mean A t  Therefore. N I N o A. That is. N is a timet . I .Ta s satm

transformation of the stationary Poisson process N Another

characterization of N is as follows. Consider N on E = [OT] where AT ( 00

and let N' be a p(x) - thinning of N 1 with p(x) = Xx/AT, 0 < x < T. then

Theorem 2.8 yields N N'. This representation is convenient for simulations

of N (Lewis and Shedler (1979)). One need only generate points of N1 on E.

say. T 11. Tn and then retain the point at T. with probability p(T.). The

resulting points constitute N. This procedure requires the evaluation of

only AT /AT' j=l,....n, (the integral A need not be evaluated as in the
J

time-transformation characterization). Note that this procedure can also be

used for E C R
d

Another common operation on a point process is a random translation of

its points. Suppose N is a point process on E and E is closed under addition

*1,. "0 ' ". ". o" ". e- ""
"S % . .
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(x + z E E for each xz E E). Suppose N' is a point process on E of the

form.

N(A) - , l(x+zCA)M(dxdz) = I I(X +Z CA). ACE.
NA) fE 2 n=l nn

where N = 1  6 is a marked point process of N on E2 whose marks are
n=l 'X -Zwhsmrkaenn

independent with distribution F. That is, N' is the process N with each

point at x translated a random distance with distribution F (i.e. X isn

translated to X +Z ). From Lemma 1.13, we have

LN,(f) = E+exp[- fE2 f(x+z)=(dxdz) LN(g)

where g(x) = - log fE*e -f(x + z ) F(dz). Here is a special case.

Theorem 2.10. If N is a Poisson process with mean measure A. then its

translated version N' defined above is a Poisson process with mean measure

A'(A) = IEA(A-z) F(dz).

Proof. This follows since a substitution of the Poisson Laplace functional

LN in the preceding expression yields

LN.(f) = exp[ - E 2(1 - ef(x+z))F(dz)A(dx)]

= exp[- E(l e-f(Y))A'(dy)].

2.4 Cox Processes

One can construct natural generalizations of random variables by

randomizing their parameters. For example, a random variable with

-Xxdistribution P(X x) = p (I - e )F(dA) is called an F-mixture of
0

exponential distributions or an exponential random variable with a random

parameter that has the distribution F. This procedure of randomizing

parameters also extends to stochastic processes (recall the mixed sample

S.
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process). Another primary example is the Cox process: a Poisson process

with randomized intensity.

Definition 2.11. Let N be a point process on E and A be a random measure on

E (not necessarily on the same probability space as N). The N is a Cox

process directed by A if, for each n.....nnk and disjoint Al ..... k in E.

=[ k n ie-A (A i) ]

P(N(AI) = nl... .N(Ak) = nk) = A(A e /n.!j=l ^Aj

This is equivalent to

L E xp -e )A(dx)J)

Cox (1955) introduced this process, which is sometimes called a doubly

stochastic Poisson process, a conditional Poisson process, or a Poisson

process in a random environment.

As an example, suppose N is a point process on R that represents the

number of failures over time of a robot in a manufacturing plant. The robot

makes several types of parts and when it is used on a job of type u. its %

number of failures is a Poisson process with constant rate a(u).

Consequently. if the production schedule were specified by a non-random

function u(t). then N would be a Poisson process with mean measure

At = ft a(u(s))ds. Suppose. however, that the production schedule is a

stochastic process (U t 0) that is not affected by the failures. Then

the failure process N is a Cox process directed by A. where At = ft a(U )ds.

Since Cox processes are essentially Poisson processes, each result for

Poisson processes generally has a counterpart for Cox processes. Some

elementary properties of Cox processes are as follows (see Br6wmxud (1981).

Crandell (1976). Karr (1986). and Synder (1975) for further discussion).

Here N is a Cox process directed by A.

41
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(a) EN(A) = EA(A). VarN(A) =EA(A) + VarA(A)

M[k](A l ..... Ak) = E[Al(AI)...Ak(Ak)]-

(b) N is simple if and only if A({x)) = 0 a.s.. x E E.

(c) N is stationary if and only if A is stationary (the definition being

similar to that for point processes). When A(A) = fAXxdx. then A is

stationary if and only if {X: xEE} is a stationary process (cf. S5.1).

(d) When E = R +. then N = N I o A. recall Example 2.9. where N I is a

stationary Poisson processes with rate 1 independent of A.

(e) The Poisson results in the preceding sections readily extend to N. For

instance, if N ... N is a partition of N based on the probabilitiesn

pl(X) . (x). then each N is a Cox process directed by pk(x)A(dx).lx)'''nx) k

and N .. N. N are conditionally independent given A.
V n

Example 2.12. Negative Binomial Processes. Let N be a Cox process on E

directed by A. Suppose A = Yp. where p is a non-random measure on E and Y is

a random variable. Such a Cox process is sometimes called a mixed Poisson

process. Then the Laplace functional of N reduces to

LN(f) = *(IE ( - e- (x)) p(dx)'. where 0(s) = E(e-SY).

Now consider the special case in which Y has a gamma distribution with

#(s) = (l+s) - r . Then

LN(f) I [1 + fE (1 - e - r (x)) p(dx)]

In particular, for A 1..... Ak in E.

Eexp - tkN(Ak) p/(l- _ qrtrd r t] k r p.1
k= k=l

where p I + A( U A )]- and qk = pX(Ak). This is the multivariate
i=l

Laplace transform of the n-dimensional negative binomial distribution with

parameters n.p.ql ..... qIn That is. the finite dimensional distributions are

%U
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negative binomial. Accordingly. N is called a negative binomial point

process (Gregoire (1983) and Diggle and Milne (1983)).'

The preceding is not the only type of negative binomial process. Here

is another one. Let N = 2n=1 Zn6T be a compound Poisson process on E whose
n

Poisson points have mean A and whose masses Z have the probability density
n

P{Z n = m} = (pm/m)log[l/(l-p)]. re=l,2 ...... where 0 ( p < 1. Then from

(1.2). we have

LN(f) = exp I - - mf(x) )A(dx)(Pm/m)log[l/(m-p)]}
m=l

= exp f log [(1 - pe- Qx))/(I - p)]/log(l-p)A(dx).

In particular, for disjoint A1 ..... An
{ [ n ]} n -A(A i)/log(l p)

E exp - k- tkN(Ak)]} = 17£(1 - p)/(1 - Ptk)]
k= 1 k= 1

Again, this is an n-variate negative binomial Laplace transform. In this

case. N has independent increments, which was not true for the preceding

example.

2.5 Poisson Cluster Processes

Let N = 6' X be a point process on E. Suppose there are point
n=1 X

n

processes N ... N on some space E' representing clusters of points

associated with the respective points X1 ..... X , and that 2V N (B) ( . B' V n= l n

E B. Then N' = 2v= N is a point process on E' representing the
n I n

superposition of the clusters. Suppose, in addition, that N N are

position-dependent marks of X1 .... X with distribution

K(x.A) = P{N C A I Xn = x. v > n}. for A Borel in A',

,,0 . . . .. ......... , , . ............
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where A' is the set of all counting measures pi on E'. Then the Laplace

functional of a single cluster is

L(f;x) S E{exp[- IE.f(Y)Nn(dY) I Xn = x. v > n)

= f. exp[-E'f(Y)1(dy)K(x.dI).

Furthermore.

LN.(f) = E{E exp(- I fE'f(Y)Nn(dY)) I N

n= 

D

V ( V
= E 17 L(f; Xn) = Eexp 2 log L(f;X)}.

n=l n=l

Thus.

LN.(f) = LN(g) where g(x) = - log L(f:x).

A point process N' whose-distribution has a Laplace functional of this

form is called a cluster process of N whose clusters have distribution

K(x,d~p). We call N' a Poisson cluster process when the parent process N is

Poisson. In this case.

LN.(f) = exp - E' fN.(i - e-ff(Y)pL(dY))K(x.dip)A(dx)}

where A is the mean of N. Note that any point process of the form

N'(A) = ,p(A) M(dxdp)
ExA'

is a cluster process of N when M is a Marked point process on ExA' of N with

location-dependent marks with distribution K(x.dp). Note that a compound

Poisson process is a special case of a Poisson cluster process.

Example 2.13. Neymn-Scott Cluster Process. Suppose N is a stationary

Poisson process on E = Rd with rate X whose point locations represent cluster

centers. Associated with a center, say at x. there is a cluster of fl points

whose distances from x are independent and identically distributed and (i is a

%.......""
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random variable independent of x and the distances. In other words, a single

cluster process centered at x is equal in distribution to the mixed sample
Pa

process N = bX+y where O.Y Y.. are independent and each Yk has the
k=l kxY 1 '

distribution F. Let N' denote the sum of these single clusters centered at

the point locations of N. Then N' is a Poisson cluster process whose

clusters have the Laplace functional (recall S 2.2)

L(f;x) = Eexp[- 'Ef(y)NX(dy)]}

= (Ee-f (x+Y) F(dy))

where G(s) = E(sku).E

See Cox and Isham (1980) for further discussion of this and other

cluster processes. Also. Serfozo (1984a) shows that a Cox process may be a

good approximation for a cluster process whose clusters and points within a

cluster are sparse (this is analogous to the Poisson approximation for rare

events as in Theorem 3.7).

]
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3. OVER(ENM IN DISTRIBUTION OF POIN PocEssEs

As in many areas of probability, the notion of convergence in

distribution plays an important role in the theory and applications of point

processes. The focus of this section is on the convergence in distribution

of sums of independent point processes to Poisson and infinitely divisible

processes and on related rates of convergence and Poisson approximations. P

3.1 Basics of Convergence in Distribution

We begin with a short review. Suppose X,X, X 2 .... are random variables

that take values in E (think of these as general random elements not as p

locations of points). The sequence Xn converges in distribution to X.

d
written Xn dX. if Ef(Xn) E(X) for every bounded continuous f: E -*R (i.e.

the probability distribution of X converges weakly to that of X). A simple
n

characterization is that Xn d X if and only if P(X E£ -+ P(XEA for each AEE
n n

with P(XE aA) = 0 (here OA means the boundary of A).

The importance of convergence in distribution is manifest by the

following basic results (see Billingsley (1968) for further properties of

convergence in distribution).

d d
Continuous Mapping Principle. If X d X. then f(X ) d f(X) for every

n nl

continuous f: E -, E'.

d
Convergence of Expectations. Suppose E = R+ and X n + X. Then EX -+ EX <

if and only if the X are uniformly integrable: sup E[X nI(IXn I x)] -+0 as
nn n

x - .-

k ; Z 
-I... . .A-.
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We now return to point processes. For a point process N on E. we define

BN = ( B E B: N(OB) = 0 a.s.} and define IN as the set-of all intervals in

Let NN 1VN 2 .... be point processes on E. Here are some

d
characterizations of the convergence N n- N, which is defined as above (seen

Theorem 4.2 in Kallenberg (1983)).

Theorem 3.1. The following statements are equivalent.

(i) N d-*N.n

(ii) (N n (I I)..... Nn (1k0 )  d (N(I ) ..... N(1k)) '  'II ....Ik  in IN .
d

(iii) fE f(x)N (dx) d fE f(x)N(dx), fECK.

(iv) LN (f) -* LN(f). fECK.
n

It is easy to see that when statement (ii) is true, then it also holds

for any I I in E with N(OI.) = 0 a.s. Similarly, statement (iii)

extends to bounded f: E -+ R with {x: f(x) > O} E B and N(Df) = 0 a.s.. where

Df is the set of discountinuity points of f. Condition (iv) is commonly used

to establish (i), while (ii) and (iii) are used as properties or consequences

d
of N dN.n

An elementary type of convergence is if N is a sequence of pointn

processes defined by parameters a (e.g. a vector of numbers and measures).n

and N converges if a does. For example, if N is a Cox process directed by
n n n

A and A n+ A. then N n- N where N is a Cox process directed by A. Similarn n n

statements apply to Poisson. negative binomial and sample processes. Also.

when E = R+. then from Remark 1.2 it follows that N n N if and only if theirn

point locations or interpoint locations converge accordingly

((Tn I..... Tnk) (T1 ..... Tk) for each k). In prarticular, renewal processes

%I
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N d N if and only if their waiting time distributions converge accordinglyn

(Fn(x) - F(x) for each F-continuity point x).

The following is a useful characterization of convergence when the limit

process is simple.

Theorem 3.2. Suppose N is simple and

(3.1) lim limsup P{Nn(B) > m) = 0. BEB.
m-PM n-w

d
Then N nd N if and only ifn

lim P{Nn(B) = 0} = P(N(B) = 0). BEB .
n-im

Proof. The necessity follows from Theorem 3.1. and the sufficiency follows

from the uniqueness property in Remark 1.2(b) (since (3.1) implies that N isn

relatively compact; see §4 in Kallenberg (1983)).

Remark 3.3. A sufficient condition for (3.1) is lim sup ENn (1) EN(I) < .
n-0

I E IN (see §4 in Kallenberg (1983)).

3.2. Convergence to Poisson Processes

We now show that Poisson processes arise as limits of sums of sparce

point processes and as limits of rare-event processes.

Suppose, for each n. that N.N .... is a finite or infinite sequence
ni ' n2,

of independent point processes on E such that I N nj(B) ( , BeB, a.s. and

that they are uniformly null:

lim sup P(N nj(I) 1) = 0. IMI.
n- j

We call (N nj a null array of point processes.

N N

% , %, % %%* %
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The following result is due to Crigelionis (1963) (he proved it for E=R

and Jagers (1972) proved it for general spaces; see pp 175-6 in Kallenberg

(1983) for further credits).

Theorem 3.4. Suppose (Nnj } is a null array and N is a Poisson process with

mean A. Then 2.N .d N if and only if
j nj

(3.2) lim I P(Nnj (B) > I} = A(B). BEBN. and
n--9 j

(3.3) lim P{N nj(B) > 2) = 0 BEB.
n-4 j

Proof. This is a special case of Theorem 3.8. To illustrate the analysis

dealing with convergence, we shall apply Theorem 3.2 to prove that (3.2) and

(3.3) imply Nn d N when N is simple. Fix BEB and let p n = P{N nj(B) ) I and

N = 2 N.. We can write,
An .nj

J

(3.4) P(Nn(B) = O} = T P{N nj(B) = 0) = exp I log P(N.(B) = 0)

= exp( - P Pnj - 7 2 p /k).
j j k=1 nj

* Now for n large enough so that sup p < 1/2. we have

Go Jk 2 k

I p /k < 2 p . p < 2 sup p p -+ 0.
Ijj k=l j k=l n , Pnj j

Using this and the assumption 2 pnj - A(B) in (3.4) yields
J

P{Nn(B) = 0) -. e - (B ) = P(N(B) = 0). BEIBN.

Next. observe that

%. - .- .
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P(Nn(B) k) < P{U (N.(B) 2) U{at least k different Nnj(B) = I

_ PN nj (B) > 2) + 2. Pni ""PnjkJl < '  "<k Ik

k k
I P{N nj(B) _ 2) + (2 p nj) - A(B)

m

Since A(B) < o. we can choose a finite partition B U B. with A(B.) < 1
i=l

for each i. Then using P(N (B) > k} 2' P{N (B k) and the preceding
n i=l nBi >

limit. we have
mk

lim lim sup P(N n(B) k} < lim 2 A(Bi) 0.
k-- n-Q k-f" i=l

d
Thus Theorem 3.2 yields N nd N.n

The preceding result is frequently used to justify a Poisson model for

sums of sparce processes. Care should be taken in invoking this result.

however, since the sum 2.N . may converge to limits that are not Poisson: see

Theorem 3.8. The closeness of 2 .N . to being Poisson can sometimes be,j nj

assessed by results as in S 3.4. A corollary of the preceding for sums of

renewal processes is as follows.

Corollary 3.5. Suppose N nlNn2.. are independent renewal processes with

interpoint distributions Fnl Fn2*.... respectively, such that

(3.5) lir sup F nj(t) = 0. t > 0.

Let N be a Poisson process on R with mean A. Then 2. Nn, d N if and only if+,1 nj

2 F nj(t) -+ A(O,t], for each t with A((t}) = 0.

Proof. By Theorem 3.4. it suffices to show that (3.5) is equivalent to (3.2)

and (3.3). But this follows immediately from the relations

%
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I P(Nnj (Ot] > I) = 2 F nj(t)

I P{N nj(O.t] > 2} = I F njF nj(t) < 7 F nj(t) 2  < sup F nj(t) 2 F nj(t).n . n t J

Example 3.6. Suppose N N2 -.... are independent renewal processes with

interpoint distribution F. Consider the sum 2n N. As n-90. this sum tends
j=l j*

to infinity. However, we would like to normalize this sum, as in a central

limit phenomenon. so that it converges to some point process. A natural way

to do this is by rescaling the time axis. Accordingly, consider the process

n
N (0t] 2 N (0.t/n]

.j=l +

which is the sum with the time axis expanded such that 1/n is the new unit of

time. Suppose the derivative F'(O) = X > 0. Then clearly

Nnj (O.t] E N.(Ot/n] is a renewal process with interpoint distribution

n
F(t/n), and the conditions of Corollary 3.5 are satisfied with 2

j=l

P(N.(Ot/n] > 1} = n F(t/n) + tX as n--v. Thus Nn d N, a stationary Poisson

process with rate A.

The Poisson process is sometimes referred to as a point process of rate

events because of the classical result that the number of successes in a

sequence of Bernoulli trials is asymptotically Poisson as the probability of

success tends to 0. We shall now present this rareness property for point

processes other than Bernoulli processes. We discuss rareness in terms of

thinning (recall S2.3).

Let N be a point process on E = Hd . Suppose N' is a p -thinning of N.
n n

where p n 0 (Pn is the probability of retaining a point). As pn -0. the

n---.
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dpoints of N are rarer and N' - 0. We would like to normalize N' to studyn n n

its asymptotic behavior. Accordingly, consider the prdcess N (B) = N'(p B).
n n n

which is the thinned process with the space Rd compressed such that pnI is

the new unit of volume. In addition, suppose that N satisfies the weak law

of large numbers

N(Bk)/ I --- X as k - ;

for any sequence Bk in B with the area IBkI -*a. where X is a positive

constant.

Theorem 3.7. Under the preceding assumptions, N n - N where N is an

stationary Poisson process with rate X.

Proof. One approach is to verify LN (f) - L *(f) by direct computations. An
n N

alternative. informative approach is to observe that this assertion is a
oV

"randomized version" of Theorem 3.4. Namely, suppose N = 2 6 and let

Z nl. Z n2-- be independent Bernoulli random variables with pn = P{Zn = i0.

Then we can write

Nn(B) = N'(p nB) = Y Znj (X Ep B) = 2 N nj(B).
j=l j=l

where N nj = Znj 6PnX Now. note that. given N, the (Nnj } satisfy the

n~j j Pnn nj

assumptions of Theorem 3.4 (in terms of probabilities conditioned on N) with

I P(N n(B) > I I N) = PnN(pn B) . XIBI.
j=l n n n

Consequent ly.

Eexp[- E f(x)N n(dx)] I N }d exp FIE(l -f(x))Adx] 1,(f)"

Then taking expectations yields LN (f) - LN*(f).
n

N.1
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Renyi (1967) proved Theorem 3.7 for a renewal process N. A special case

is where N is non-random with one point at each integer-1,2.... Then N is an

Bernoulli point process with probability pn of a point at each of the

locations p 2TPn 3 pn ..... where p N(pnlt) -I t. and N d N* is the classicaln

Binomial-to-Poisson convergence. This result (which is a functional limit

theorem) can be viewed as the Poisson analogue of Donsker's functional

central limit theorem for sums with the Weiner process as a limit. The

normalization N(p B) is rather natural: a normalization of the form
N (bscB)eishelspto

ann(bnB) is analogous to (Ik= I Zk - an /bn (note that b rescales the space

in the former and rescales the quantity in the latter). Kallenberg (1963)

extended Theorem 3.7 to general E and initial processes N that vary with n

such that the limits are nonstationary Poisson or Cox processes. For further

results on thinnings of point-processes, see Serfozo (1980. 198-a.b) and the

references therein.

3.3 Convergence to Infinitely Divisible Point Processes

We saw that the sum 2 N n of a null array of point processes may

J

converge in distribution to a Poisson process. Other limits, however, are

possible. We now show that such sums may converge to infinitely divisible

point processes and that these are the only possible limits.

A point process N on E is infinitely divisible if for each n there are

independent identically distributed point processes N .. N such thatn

N = N +...+N . We shall also be interested in point processes that aren

infinitely divisible with independent increments. The following are useful

_0 -.r 114 %e
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characterizations for such processes (these are from Theorems 7.1. 7.2 and

6.1. respectively. in Kallenberg (1983)).

(a) A process N has independent increments if and only if it has a

k
representation of the form N = N' + I Z.6 . where N' is infintely

l J x.

divisible with independent increments, x. are non-random points in E. k < w

is non-random, and Z are positive integer-valued random variables

independent of N'.

(b) A point process N is infinitely divisible with independent increments if

and only if

(3.6) LT,(f) = exp - 0E( - e (x)
m=O

where -r is a measure on E. For example, when - (dx) = F((m))A(dx). then Nm m

is a compound Poisson process-whose Poisson points have mean A and mass

distribution F.

(c) A point process N is infinitely divisible if and only if

(3.7) LN(f) = exp {- [ f(x)I(dx)]rj()

where rj is a measure on the set Nt of non-zero counting measures pi on E such
0

that I (1 - e' (B))(dia) < -. BEB. In other words, N is infinitely divisible
.N 0

if and only if it is a Poisson cluster process (recall § 2.5).

The following are fundamental results on the convergence of sums; see

Theorems 6.1 and 7.2 of Kallenberg (1983). Suppose that (Nnj } is a null

array of point processes on E. Let N' be an infinitely divisible point

process on E with independent increments as in (b) and let N* be an

infinitely divisible point process on E as in (c).

%'.,
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Theorem 3.8. If I. N -. to some N. then N is infinitely divisible. AJ ni

necessary and sufficient condition for 1..N d .N' is thatJ ni

lim 2 P(Nnj (I) = m} = m (I). IEI N .r j

A necessary and sufficient condition for 2.N d N is thatj n.1

lir I - LN (f) j = f[1 - e
n- ,J nj

This condition is equivalent to

lim I P{N nj(I) = m .  nj (Ir) = m = r1r

for 1 ..... 1 in IN.

The preceding results show that infinitely divisible point processes

arise naturally as Poisson cluster processes and as sums of sparce point

processes. They also arise as limits of compound point processes with

uniformly small masses, similar to the Poisson rare-event property in Theorem

3.7; see S8 of Kallenberg (1983) and Serfozo (1984). The convergence of

point processes is an important tool for analyzing high-level exceedances or

rare events of a stochastic process. Here is an elementary example.

Example 3.9. High-Level Exceedances of a Random Walk. Let YI' Y 2"' be a

simple random walk on (0...... } whose probabilities of moving forward or

backward one unit are respectively p and q=l-p, and P(Yk+l = Y= 0 = I.

Consider the point process

N'(t) = (Y n)6bIOt], t > 0.
n k--O k ot]

II

% % % % %
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This records the number of steps at which the walk exceeds the level n (or

the amount of time the walk spends in [n.-)). We are interested in the

behavior of N' as the level n -* Accordingly. we consider the normalized
n

process N (t) = N'(a t) , where a = (q/p)n/(q/p-l). As an application of
n n n n

Theorem 3.8. it follows that N d N. where N is a compound Poisson processn

with stationary Poisson points at rate (l-p/q)/2 and mass distribution

V k~* rnI
F({m}) = I g (m)(p/q)m- (l-p/q)

k= l

where

)k- 4p ""
g(2k-1) (-I) /(2p) k > 1.

The limit N is compound Poisson rather than just Poisson because there is a

clumping of points in N : when the walk exceeds n it typically stays there %

n

for several steps in succession before wandering below n. This result

appears in Serfozo (1980). See this paper. Leadbetter et. al (198.3). 11sing

et. al. (1987) and their references for similar results on high-level

exceedances, or level-crossings for stationary and other processes.

3.4 Poisson Approximations

Regarding the preceding convergence theorems, a typical concern is the

rate of the convergence or the nearness of the distribution of X nj (A) to

that of its limit. There are several metrics or distance measures available
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for addressing such issues. We shall discuss the total-variation metric and

its use for assessing the quality of Poisson approximat-ions. The following

results are based on ideas in Serfling (1975). Serfozo (1986) and their

references.

We begin with an introduction to total-variation distances. Suppose X

and Y are real-valued random variables not necessarily on the same

probability space. The total variation distance between X and Y (or between

their distributions) is

d(X.Y) a sup IP{XEB} - P(YEB)I.
B

where the supremum is over all Borel sets B in R. When X and Y are

integer-valued, this reduces to

d(XY) = , IP(X=m} - P(Y=m)I.

m

Here are some basic properties of this distance measure.

(a) Coupling Inequality: d(X.Y) < P(X'XY'}, for any random variables X',Y'

dd
on a single probability space such that X = X and Y' d Y. One can derive

bounds for d(X.Y) by constructing X, Y' for which P(X'xY'} is small and

calculable. There are X'.Y for which equality obtains.

(b) Triangle Inequality: d(XY) ( d(X.Z) + d(Z.Y).

(c) d(X.Y) _ E[suplP(X'EBIU} - P(Y'CBIV}I]. for any random variables
B

X'.Y'.U.V on a single probability space such thit X X and Y' y. We

write this as d(X.Y) E[d(X'IU. Y'IV)].

-,-J ,. , - - - , . "o '" ', . " / . '. '" " ,r ." , , " ' ' .' . . . " " ." ," . "' .' , . '. ' ' " ." " ''' ''% % %' ' .'" ' ' '



(d) If X .Xn are independent, and Y -..... Y are independent, then

n n nd( 2 X.. :E Y :E<. d(X Y
j=l J j=l J j=l "Y J)

(e) If X and Y are Poisson with respective meais a and 13. then d(X.Y) ,

(f) If X is a Bernoulli random variable with p = P(X=l). and Y is Poisson

2
with mean p. then d(X.Y) ( p

(g) Measurable Rapping Principle: If d(Xn.X) - 0. then Xn d X and.

moreover. f(X ) d f(x) for any (measurable) f: R-iR (cf. the continuous
np

mapping principle in 13.1). This observation is useful for establishing

limit theorems.

The next result, as we shall show. is useful for assessing Poisson

approximations. Similar results hold for sums of dependent variables and for

compound Poisson approximations.

Theorem 3.10. Suppose X ..... X are independent non-negative integer-valued

random variables and Y is a Poisson random variable with mean a. Then .

n n 2 n
d(=I Xj.Y) Y [P(X. ) 2) + P{X. > 1)] + Ia - - P(X. _ 1)1.

j=l j=l 1 j-l

Proof: Let Y '..... Yn be independent Poisson random variables with respective

means P(XI>l)..... P{X n>1). Then by properties (b).(d).(e). we have

.

;% 0 % %
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n n n n n
d( 2 X. Y) _ d( I X.. I l _(X 1)) + d( X I(X > 1). 1 Y.)

j=l i jl j=l j=l

n
+ d( 2 Y.. Y)

j=l

n n

< ): d(Xj. I(X I)) + I d(i(X 1). Y.)
j-l j=lJ

n
+ ja - I P(X. > M)1.

j=l

Using d(Xj, t(X. > 1)) = P{X. _> 2) and d(l(X. > 1). Y.) < P(X > I)2 from (f)

in the last line yields the assertion.

We now apply the preceding ideas to point processes. Here is a

companion to the Poisson convergence in Theorem 3.4.

Corollary 3.11. Suppose (Nnj } is a null array of point processes on E and N

a'is a Poisson process on E with mean A. Then, for ACE,

d(Y N nj(A). N(A)) Y PNnj (A) _ 2) + 2 P(Nnj (A) 1)2

+ IA(A) - I PNnj (A) _1)1.

This is an immediate consequence of Theorem 3.10 (which also holds for

n=-). Under the assumptions of Theorem 3.10. the right side of the preceding

inequality tends to 0 as n-4. One is typically interested in the case when N

has the mean A(A) = P{N nj(A) > I}- then the right side consists of only the

first two terms.

*-: • , ."
*%U %,%- --. -. ,%-,,-.. ,. ....... .. . . . . .



The next result is a companion to the rare-event property of Theorem

3.7.

Corollary 3.12. Suppose N is the rescaled p n-thinning of N as in Theoremn .n

3.7 and N* is a stationary Poisson process with rate X. Then for BEB.

2I
(3.8) d(N n(B), N*(B)) p2 E[N(PnB)] + E[I XIBI - pnN(PnB)I].

Proof. Using property (c). Theorem 3.10 and the notation in the proof of

Theorem 3.7. we have

d(Nn(B). N (B)) - E[d(N n(B) IN. N*(B))] E IEI P{Z nj(PXnE) = 11N)

j'p.

+ E I-J - 1 Znj(PnX CB) W i}j
j=l

E 2n l P(PnXnB) + E I NIBI - 2 : n ~n n Xn E)i
j=l j1l

where the last two expectations are equal to those in the assertion.

Note that the right side of (3.S) tends to zero when N satisfies the

weak law of large numbers as in Theorem 3.7 and lir sup p E[N(p B)] ( 

(consequently. Nn(B) d N*(B), which we also know from Theorem 3.Y).

nN

. . . ... . . . .

% % % % %
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4. RENEWAL "IlEDRY

The theory of renewal processes was developed in the '4Os. '50s and '60s

by Blackwell, Doob, Feller. Smith and others. The major topics of this

subject are: (a) The key renewal theorem, which describes the limiting

behavior of the solution to a renewal equation. (b) Applications of the key

renewal theorem to obtain limits of means and distributions of functionals of

renewal and regenerative processes. (c) Limit laws of renewal, compound

renewal or regenerative processes that are consequences of analogous limit

laws for sums of independent random variables. (d) Processes with a

renewal-like structure (e.g. alternating, transient, or branching renewal

processes). (e) Statistical properties of renewal and regenerative

processes. (f) Applications in systems that regenerate over time (e.g.

systems involving queueing. reliability, inventory control or cash flows).

Since renewal theory is a common topic in introductory texts on

stochastic processes, our coverage will be brief and confined to only the

first three topics, with a novel treatment of the last two. Basic references

are Feller (1971). Cinlar (1975) and Cut and Prabhu (1987).

4.1 Distributions of Renewal Processes

Suppose that N is a renewal process on R with renewal times

0 < TI < T 2 <... and independent waiting times between renewals W I'2....

that have the distribution F. For simplicity, we write N t = N[O.t]. Some

useful relations between the numbers of renewals and the renewal times are

*' o0 (0)

N . .. 1 < t) . nl(r' < t < Y ) = sup(n: r < t.
n rl -l -nl
n= l n=l

(N > n}) = < t} . arid TN t < I N +1
t t

These properties. which follow by inspection, are true for any point process

N on R with N(R+) = . An immediate consequence is

S
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P(N t = n} = P{N t > n) - P{N t >n+ }

= P{T n < t} - P(Tn+ < t} = Fn*(t) - F(n+l)*(t),

where Fn * is the n-th fold convolution of F. In addition, all moments of N t

are finite and

EN = 2 E[I(T n < t)] n

n=I n=l

The renewal function
0o.

U(t) = =O. F n(t) I + EN

plays an important role in characterizing N and it is the focus of the key

renewal theorem. We first note that U and the distribution of N uniquely

determine each other. To see this. take the Laplace transform of the

preceding equation to get U(s) = (1 - F(s)) . where U. F are Laplace

transforms of U.F. Then clearly U and F uniquely determine each other and

hence so do U and F. But we know by Remark 1.11 that F- and the distribution

of N uniquely determine each other. Thus the assertion follows. As an

-1
example. N is a stationary Poisson process with rate pi if and only if

U(t) = I + t/i. Unfortunately. nice expressions for renewal functions are

the exception rather than the rule.

The following limit laws for N describe its ascension to - as t-W. We
t

let p . - denote the mean of F. and we interpret I/- as 0. Recall that a

distribution F is arithmetic if its jumps are concentrated on points of the

form d.2d.3d.... and the largest d with this property is the span.

Strong Law of Large Numbers: Nt/t -o l/i a.s. (Corollary 4.12).
L, %

Central Limit Theorem: If the variance a' of F is finite, then

1/2 -3/2 d(N t - t/P)/(o t P -  ) Z. where Z is a standard normal random variable.
2

Convergence of 4oments: E(N /t)r -- (1/,)r for r > 1. and. when a exists.

',

,1,

% % %.%
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EN = t/Up + (a -2 12 212) + o(1) and VarN = ta 2 /)3 + o(t)
t t j ~)

where t-lo and, in case F is arithmetic, then L is a multiple of the span

(these statements follow from Example 4.8).

Renewal processes are intimately related to processes that are

regenerative or have regenerative increments as follows. Suppose X = {Xt

tCR + } is a stochastic process with state space E and sample paths in the set

D(R +.E) of all functions from R + to E that are right-continuous and have

left-hand limits. The X is a regenerative process with regeneration times

T T if N = En 6 is a renewal process and, for each ...... tk. w in

n

R and A 1  A k in E.

(4.1) P(W n+1 < w. XTn+tX 
A ,_.. XTn+tk E Ak I W W n; Xs' s < Tn)

I k= P{W 1  w. Xt c AI ... Xt L A }. n -- 0.1....

The nth cycle of X consists of the information

En = (Wn' (X r nl+u 0 < u < W n. n = 1,2....

which is the cycle time W = T - T and the trajectory of X in [T 1 l' Tn].n n n-I "

Condition (4.1) is equivalent to lf2'....being independent and identically

distributed (which also implies that N is a renewal process). This

definition is equivalent to that in Cinlar (1975); we avoid his assumption

that-T n is a stopping time of X by including Wn+ 1 in (4.1). Positive

recurrent Markov or semi-Markov processes are examples of regenerative

processes.

Now suppose X = X t;tCR+ has state space R and sample ptahs in D(R ,R) .

The X has regenerative increments over T1,T2 - . if N n=l 1 ' is a renewal
I'

process and, for each w. x 1..... Xk and 0 < s 1 < t1 < (< ( tk .

(41.2) P(W 1  _ w, XTn+t -X (x ..... X.n+tk- X'lT'+Sk - xk

W w . .. X.,1- < T,

nII n n -:



P{W, I w. Xt -XSI < x .... Xtk - Xsk < xk} n = 0,1 ....

This condition has an interpretation similar to (1.1) via cycle information.

Such processes are useful for modeling additive functionals of regenerative

processes as in §4.3 and §4.4.

The notion of regeneration is also manifest in point processes. A point

process N on R+ is regenerative over TI ( T2 < ... if (N tER +} has

regenerative increments over these times. The T 's need not necessarily ben

points of N. For example, the times at which a regenerative process enters a

certain set form a regenerative point process. Also. a point process N on R

has regenerative interpoint distances if WI, W .... is a regenerative sequence

over discrete times vI < V2 < .... See Neuts (1979) and Wold (1918) for

related point processes (the N is a Wold process when WI' W2 *... is

Markovian). The analysis of such point processes is similar in part to that

of renewal processes.

4.2 Key Renewal Theorem

We now consider the renewal equation

f(t) = g(t) + f f(t-s)F(ds), t > 0,
[ot]

where F is the distribution as above and f and g are functions from R to R

that are bounded on finite intervals. The F and g are known and f is

unknown. The f is typically the mean or distribution of a functional of N as

we disc,,ss below. The assumption that f*.g are non-negative is for

convenience; one can treat real-valued fg by considering their positive and

negative parts separately (the positive and negative parts of f are

f+(x) = max(O.f(x)} and f-(x) =-min{O,f(x)}). The renewal equation f = g +

F f has the unique solution

J.
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f(t) = f g(t-s)U(ds) = U * g(t).
[0,t]

This is clearly a solution since g + (U * g) F = U * g. See Chapter XI of

Feller (1971) for a proof of the uniqueness and for proofs of what follows.

A major issue of renewal theory is the existence of the limit of

U * g(t) as t-4-. To describe this. we need one more concept. A function

g: R+ -* R+ is directly Riemann integrable (denoted gC D) if the following

sums exist

s(6) = 6 2 inf(g(x): (n-I)b < x < n6}
n= 1

S(6) = b E sup(g(x): (n-l)6 < x < nb6
n=l

and lim (S(6) - s(6)) = 0. Consequently, g is bounded on finite intervals

and

00

lim s(6) = lim S(6) = f g(x)dx,
6-0 6-0 0

which is the usual indefinite Riemann integral (the preceding conditions are

stronger than those needed for the existence of the integral). Clearly g E D

if the number of discontinuities of g is finite in each finite interval and

either (i) g is zero outside a finite interval or (ii) g is decreasing and

CD

f g(x)dx < -. Here is another characterization.
0

Lemma 4.1. (Hinderer (1986)). g E D if and only if' S(b) < - ['or some 6 and

g is continuous almost everywhere with respect to Lcbesque measure.

The following major results describe the limiting behavior of U g g and

U. (Recall that I/-n = 0.)

Key Renewal Theorem 4.2. If F is not arithmetic and g C D. then
00

lim U * g(t) = 1 - 1 f g(x)dx.
t- D 0

% .. ~ /-/~ ~' ~ ~*~ %~ % *%
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If F is arithmetic with span d and the following sum is finite, then

-1
lim U * g(x+nd) = p I g(x+kd).
n--so k=l

Black ell's Renewal Theorem 4.3. If F is not arithmetic, then U(t+h) -

U(t) -* h/i as t -, h > 0. If F is arithmetic, then this limit holds with t

a multiple of the span.

These two limit theorems are actually equivalent: The latter follows

from the former with g(t) = l(tE(O.u]), and the proof of the reverse

implication is implicit in Feller's (1971) proof of the key renewal theorem.

See inlar (1972), Kesten (1974) and their references for generalizations of

the key renewal theorem to Markov renewal processes.

4.3 Applications of the Key Renewal Theorem

The key renewal theorem yields limit theorems for expectations of

functionals of renewal and regenerative processes. We shall present a

general approach for identifying new applications and review some standard

examples.

We first note that the standard applications of the key renewal theorem.

as in Feller (1971). are all limit statements of the form lim EO(t.N.X).

Here Z t =(t.N.X) is a functional of t, the renewal process N and a random

element X (e.g. a process or mark associated with N). The f(t) - EZ
t

satisfies a renewal equation, and so EZ = U * g(t) for some g. This raisest

the questions: What are the possible functionals 0 for which UL satisfies a

renewal equation? Must Z be regenerative? What about X? The following

observation clears the air in this regard.

Observation 4.1. Suppose Z = JZL; tER+) is a real-valued stochastic process

on the same probability space as the renewal process N. Assume that

-- ".."
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f(t) E EZt is finite for each t. Then f satisfies the renewal equation

f = g + F * f with

(4.3) g(t) = E[ZtI(TI>t)] + f[O t][E(Zt IT = s) - EZ ]F(ds )t I [~t] tt-s I

[fence EZ = U * g(t). tER +. Furthermore, when g and g are in D and F is

not arithmetic, then

lim EZt = i- g(x)dx.

An analogous limit holds when F is arithmetic.

Proof. This follows since

f(t) = E[ZtI(T>t] + f E(Zt  T I =S)F(ds) - F w f(t) + F " f(t)

= g(t) + F * f(t).

This observation has the surprising implication that the mean of any

real-valued process Zt has the representation EZt = U * g(t). This is of

interest, of course, only when Z depends on N; otherwise, it is vacuous.

Hence, if the limit of EZ appears to exist, then it is a candidate for the

key renewal theorem. The current literature on renewal theory suggests that

one "set up" a renewal equation to obtain the representation EZ = U * g(t)

or that one derive it directly, for each application. This, however, is not

needed: The preceding observation says that this representation is

automnatically satisfied for any application, and that g is given by (4.3).

Remark 4.5. Two special cases of (4.3) are:

(4.4) g(t) = E[Z tl(T >t)]. when Z is regenerative,

(4..) g(t) = E(Z A. ) ,  when Z has regenerative increments.

The following are examples of the key renewal theorem and the preceding

comments. For simplicity we assume hereafter that F is not arithmetic.

Example 4.6. Regenerative Processes. Suppose X = (Xt : tER + is a

regenerative process over TI.T 2 .. . arid h: E R+. Then from Observation -4. -

and (4.4), we have

', "-",", , , Y, Y "" , ..,Y , "'_. . . "' . . . "-'''-', . ....'""-"""- .. ""''. , -..''". "5 ' "- "-.". "- -' * 0'"."- " ".



(4.6) lim Eh(Xt) = f0 E[h(Xs)l(Tl>s)]ds.
t-.0I

provided the integral exists. It exists when E[TIb(TI)i ( . where b(t)

S sup E[h(X) T 1 = t]. The important case of (4.6) for h(Xt) = l(X tCA).
s(t

A C E, reads

-1 0-

lir P{X E} = O P{X EA. TI>Sds = p- r[fl(X s )d s ] "

Other special cases are in the next example.

Example 4.7. Backward and Forward Recurrence Times. Two basic functionals

of the renewal process N are

Y = t - T and Y'T -t
L N t N-+1

t t

the backward and forward recurrence times at t (the time since the last

renewal before t and the time to the next one after t). Another functional

is L - WN  - Yt, the length of the renewal interval containing t. To
t

obtain limits of the means or joint distributions of these processes.

consider Z t = h(Yt.Y.Lt) where h: R - R. Assume that E[T b(TI)] < -, where

b(t) - sup jh(s.t-s.t)l. The Z is regenerative, and so by Example 4.6. we
s<t t

have

lir Eh(Yt.Y .Lt) = -1E[f 0
1 h(s.Tl-sT 1 )ds].

t-- t t

Hinderer (1985) discusses this and related results. liere are some special

cases:

P{Y t <- y }  " P- f [l-F(s)]ds
P{Y0

(Y' and L, have this same limiting distribution).
t-

P{Yt ) y , Yt ) y') - I - -l YY [1 -.(s)]ds

P(Y L/1. ( x} - x, 0 < x ( I.

(the latter also holds with Y* in place of Y and

.,.,'

%U r N
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provided the last expectation is finite.

Example 4.8. Processes with Regenerative Increments. Suppose X = (X tER+}

is an increasing process with regenerative increments over T T ... Assume

that a H EXT I exists. By the strong law of large numbers ',r regenerative
1

processes (Corollary 4.12(b)). we know that tI X - a/p a.s. How does t EXt t
2

behave as t -w? Assume that F has a variance a and that the distribution

G(t) = a E(XtAT) has a finite mean a. Then
' 1

(4.7) lir [EX -at/i] = (a/p 2)[I' 2+a 2)/2 - ap].
tt4

This follows by applying Observation 4.4 and (4.5) to the process

Zt = X - at/p, which has regenerative increments, and observing that the

limit above equals

[E(XsATI - (a/ii)E(sAT1)Ids = (a/-2) [f[Ol-E(sAT1)]ds - fo[l-G(s)3ds].

which reduces to the right-hand side of (4.7). An immediate consequence of

(4.7) is lim t- EXt = a/i. Special cases of this are the convergence of
t--im

moments of N in §4.1 and Example 4.13.I

4.4 Laws of Large Numbers

Strong laws of large numbers for renewal, Markov and regenerative

processes appear frequently in operations research studies. Their main use

is for obtaining easy-to-understand performance measures of systems. They

are also useful for establishing objective functions or constraints in

optimization problems. TMe literature contains a variety of laws of large

numbers for point processes on R+ and for stoch~astic processes associated

with them. We shall present a general limit law that yields many of these

0-.. %I
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ostensively different laws as corollaries. We discuss special uses for

renewal. Markov and regenerative processes.
00

Suppose that N = 2n=l bT is a point process on Rand n = (Zt: tER + is
n

an increasing real-valued process associated with N. Since N is the

generalized inverse of Tn (recall NT =n). one would anticipate that the

n
limiting behavior of N tas t-4- would be the inverse of that of T nas n-q-.

Also, the limiting behavior of Z t should mimic that of the embedded process

* The following results formalize these statements. Here we let a and i
n

denote positive constants, one of which may be infinite. Also, in the proofs

we write the limit statements using the symbol -, where g(x) h(x) as x--0

means g(x)/h(x)-*l. We also suppress the a.s. For example, n T -* p a.s.n

becomes T n- np.
n

Thore9. If nT " a.s., then tclze -al a.s. if and only if

T nt

n 7 -a as.
/n 

.
Proof. If Z t ~- at/i. then clearly ZT ~aT /It an. Conversely, if ZT  'r

tn T
n n

an, then since Z is increasing and T N t < TN +1' we have
t t

Z t /(- Z T 1/T N a(N t+l)/(N t) a/p,
NT +1 tt

and

Zt/t > Z /T aN /[P(N +)] a/p.
t -T N-s+1 t tN tt

Combining these statements, yields Z " at/p.

C -r -Corollary 1 .10. t 1N -* a.s. if and only if n T -+ a.s.
t |i'
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Proof. If T npi. then by Theorem 4.9 with Z = N and recognizingnt t

n- INT = 1. we get N t - t/p. Conversely, if N t/p. then clearly T n
n

n(Tn/NT )"- r.
n

Remrks 4.11. (a) The preceding results are also true with a and p random or

with a.s. replaced by convergence in probability or in distribution. (b)

1 - 2Theorem 4.9 is useful for analyzing processes of the form Zt = Z. where

Z and Z2 are increasing (e.g. when Z has bounded variation). Just applyt t t

the result to each part separately. (c) Many versions of Little's law L = XW

for queues are consequences of Theorem 4.9. (d) Corollary 4.10 yields a law

of large numbers for any point process N whose interpoint distances satisfy
-1

such a law (i.e. when n (WI+...+Wn) converges).

We now specialize the results above to renewal and to regenerative

processes.

Corollary 4.12. (a) If N is a renewal process with j = LT (o, then t-I N-- * t

-1 a.s. (b) Suppose Z has regenerative increments over TI T 2-' and Z t =

Z - Z2, where Z1 and Z2 are increasing processes. If a = EZ exists, and at t eie I
-1Z

and u are not both infinite, then t Z a/p a.s.t

Proof. By the strong law of large numbers for sums of independent variables.

we know that n 1Tr - a.s. and n- IZ a a.s. Thus (a) and (b) follow by
n n

Corollary 4.10 and Theorem 4.9, respectively.

Example 4.13. Additive Functionals of Regenerative and Markov Processes.

Suppose X = {XL: tCR is a regenerative process over TI1 T 2*- Consider the

additive functional

(4.8) Z = ft f(X)ds + E g(Xs -X).
t 0 O(_s( t S

where f: E - R and g: E - R. The f(x) might be the cost per unit time of X

% % %.
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being in state x. and g(x.y) might be the cost of the process jumping from Y_

to y (assuming the sum is finite). Then Z t would be the'total cost up to

time t. We can write = z- z where Z +(Z are the positive andt tt

negative parts of Z t (Zt is given by (4.8) with f, g replaced by f', g').

Assume that a E EZTr = EzI - EZ exists. We can write
1 11

(4.9) a = f' E[f(X )l(Tl>s)]ds + I E[g(X -X )l(Tl>S)]
O<s<t

T
1I

= E[fo  f(Xs)ds] + E[ g(Xs_.Xs)]
s<T 1

Then from Corollary 4.12(b) and Example 4.8. we have
(4.10) t lzt ~a~as n t a.(.0t- Izt- a/p a.s. and t- I Ez "- a/p .

Expression (4.7) also applies.

In particular suppose X is a Markov process with countable state space

E and transition rates

q(x,y) =- lim P{X(t+h) = y I X(t) = x}/h, x,yEE.
h 10

Assume that X is irreducible and positive-recurrent with limiting

distribution v(x). Then (4.10) holds with (4.9) reduced to

a = 2 f(x)vr(x) + Y v(x) 2 q(x.y)g(x.y).
x x yix

For instance, suppose Z = ftl(Xs=x)ds, the amount of time X spends in

state x up to time t. With no loss in generality, we assume that X0 = x.

Then tI Z -v(x) a.s. and t-I I .#(x). Furthermore, from (1.7)t t"

lim[EZ t - tw(x)] = nr(x)[( 2+/2 /1') - q(x)-l

where q(x) I q(xy), so q(x) is the mean sojourn time of X in state x.
yfx

2

and p and a are the mean and variance of the time between two entrances into

state x.

4%.Ir~~~~~~~~r~~~~~l~_ _P A .' ' % % .% • , . . - ."," , . o ° . - . . -. o. -% . , - . , .% . - - O , . . ° -. _



5. STATIONARY POINT PROC-ES

In this section we discuss a few basic properties of stationary point

processes on R. These concern their infinitesimal behavior and Palm

distributions (a conditional distribution of a process given it has a point

at a certain location). Our coverage does not include ergodic theorems,

spectral analysis, and prediction and filtering. As for applications.

stationary point processes with marks have been especially useful in

characterizing non-Markovian stationary queueing processes (Franken et. al

(1981) and Baccelli and Bremaud (1987)).

5.1. Definitions and Examples

A stochastic process X = {X tER} with a general state space E is

stationary if (X t+h .... X t +h.d (Xt Xt ). for each h.t I  t n in R.
n ) n

That is. the distribution of X is invariant under translations of the time

daxis. A simple way of expressing this is that OhX = X for each h C R. where

0 hX is the process X with the time axis translated by h. i.e.

OhX(t) - X(t+h). t E R. Stationarity of point processes is similar. A point

process N on R is stationary if

d(N(B I + h)..N(Bn + h)) = (N(B1 ),....N(Bn)) for each B .... .B in 9. h E R.V n

In other words, the increments of N are stationary or invariant in

ddistribution under time translations. Simply stated. 0 hN = N for each

h E R. where 0h N(B) H N(B + h). which is the process N with the time axis
}h

translated by h. 1Tis notion readily extends to point processes on R +. Rd
v+

or on other groups or semigroups. We shall restrict our discussion to

processes on R. Recall the convention that the point locations of N are

labeled such that

* 9 1 ..

-9-
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We have already discussed some stationary point processes: Poisson and

compound Poisson processes with constant rates, and Cox processes with

stationary intensity processes. Here are some more examples.

Example 5.1. Stationary Renewal Processes. Let F be a distribution with

F(O) = 0 and finite mean p. Suppose N is a point process on R with

independent inter-point distances such that each W , n A 1. has then

distribution F and W 1 = T I - T0 is such that -T and T have the joint

distribution

- u+v
P{-T 0 > u, T > v} = I - [l-F(t)]dt.

In particular.

( t) = P{T1  0 t=-I t [I - F(s)]ds.P - 0  1 t0=PT _ }=

Then it follows that N is stationary. This N is called a stationary renewal

process.

Example 5.2. Functions of Stationary Processes. Many stationary point

processes arise as functions of stationary processes as follows. Suppose X

is a stationary process with state space E and N is a point process defined

by N(A) = *(X.A) where 4: .'4 x 9 + {0.1, ...) and I' is the set of sample paths

of X. Assume # is such that

(5.1) *(X.t + A) = -(OtX.A) for each t.A.

Then N is stationary. This follows since

0 N(-) = *(X. t + -) = *(OtX. #) *(X.-) = N(-).
t t

This result also holds if X is a stationary point process or a vector valued

process. For instance, suppose X is a stationary pure-jump Markov process as

4e
in Example 4.13 or S 6.3. Consider the point process N of times that X jumps

from some x C S to some x' E S' where S f( S' = . Then

-
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N(A) = O(X.A) = 2 1(Xt E S. X CS').
tEA

Clearly * satisfies (5.1) and so N is stationary.

Another notion of stationarity is as follows. A point process N on R

has stationary intervals (or inter-point distances) if the sequence .... W_11

W Wl .... is stationary: (W ) - (W ...... Wk) for any
I k

n . nk. h. If N is stationary, then intuition suvgests that it has

statioary intervals. This is true in only degenerate cases. Indeed, since
Fr

the T 's are labeled such that T- < T < 0 < T then the distribution of WIn -1-0 -1'1

will usually be different from W n- nl: The WI is an interval covering a

certain location 0 while the other W 's have no such restriction. This isn

called the waiting time paradox. For instance, if N is a Poisson process

with rate X. the W is the sum of two independent exponential random
-l

variables -T and TI both with mean A- . while any other W is simply

-l
exponential with mean X The Palm probabilities in § 5.3 shed light on

this paradox.

5.2. Infinitesial Properties

For the following discussion, we assume that N is a stationary point N

process on R. It need not be .imple. An application of Fubini's theorem

(Chung (1972)) shows that P(N((t}) = 0) = 1. for each t. Moreover, either

EN(I) < for each finite interval I. or EN(I) = for each non-degenerate

interval I. In either case.

EN = tEN t > 0.

IIwhere EN 1  a This fol lows since, by the stationarity of' N,

EN = EN + E(N - N ) = EN + N k s.t > 0.
%s+t s t s s
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When N is a Poisson process with rate A. then we know that

(5.2) P{N t > 1) = At + o(t) as t 1 0.

(5.3) = EN

(5.4) P Nt > 2) = o(t) as t 1 0.

Does each stationary process have an "intensity" A as in (5.2)? If so, does

A always equal EN I? A process satisfying property (5.4) is called orderly.

Lemma 1.7 ensures that if N is orderly, then it is simple and so one can

order its point locations (they are "orderly"). When is N orderly? The

following result addresses these issues.

Theorem 5.3. (a) (Khintchine) The limit A E lim P(N ) 1}/t exists and
t-0)

o < X<

(b) (Korolyuk) If N is simple, then A = EN1 ( 0.

(c) (Dobrushin) If N is simple and ENI < m then N is orderly.

Proof (a) Clearly f(t) E P(N t > 1) decreases to 0 as t 1 0 and, for each

s~t > 0.

f(s + t) = P(N s > 1) + P(Ns = 0. Ns+t > 1) _ f(s) + f(t).

Thus. A exists by the following property of sub-additive functions: If f:

[O.b] -* R is sub-additive (f(s+t) < f(s) + f(t), s.t > 0) and f(t) - 0 as

t - 0, then

lim f(t)/t = sup f(t)/t < o.
tdo t

(b) First note that since N is simple (its points are isolated), we can write

N li m S a.s.. where S n >=n l(N((k-l)/n, k/n] > I) and n runs through
n-- k=--

integers of the form 2 m . Then by Lebesque's monotone convergence theorem and

part (a). we have

EN = lim lJS = lim nf(l/n) = A.

................................................................................................................
........... .. ..



63
0

(c) Using the stationarity of N. we can write

EN1 = nEN(Ol/n]

Co

= nf(l/n) + nP(N(O.1/n] > 2] + n E P{N(O.1/n] _ k}.
k=3

Letting n--, we know by (a) and (b) that nf(l/n) - EN 1 and so the last two

terms in the preceding display must tend to 0.

What can we say about the distribution of the number of points at a

single location (or in a batch) when N is not simple? In case N is a

compound Poisson process with rate X and mass or batch-size distribution F.

then

P{ I < Nt < m} = XF(m)t + o(t) as t 1 0. and

F(m) = lim P(N t < m I N > I}. .

tO t

These properties extend to the.general stationary point process N as follows.

Theorem 5.4. For each m. the limit Xm = lim Pl < N < m/ exists and X

some X < . When X < -, then

(5.5) F(m) = X /X = lim P(N < m I N > I}

m tO t

and EN is the mean of F.

Proof. The first assertion follows like Theorem 5.1 (a) since g(t) = P(l <"

N t < m} is sub-additive. The existence of the limit (5.5) follows by

applying the first part and Theorem 5.1(a) to the conditional probability

P{I < N < m}/P(N > 1). That EN I is the mean of F follows by an argument1 - t -t -

similar to that for Theorem 5.1 (b). which we omit.

Extensions 5.5. All of the preceding results hold under the weaker

assumption that N is crudely stationary: N(I+t) = N(1) for each t and

interval I (see Chung (1972)). Korolyuk's result extends to non-stationary

point processes that may also be on a general space. For this and other

%
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insights into these infinitesimal properties, see Leadbetter (1972). Daley

and Vere-jones (1988) and their references.

5.3 Palm Probabilities

A Palm probability distribution of a point process is essentially a

conditional probability distribution of the process given that it has a point

at a certain location. Such probabilities shed light on inter-point

distances. For instance, a stationary point process on R will have

stationary intervals with respect to its Palm probability even though it

doesn't have stationary intervals with respect to the underlying probability

measure.

We begin by defining Palm probabilities for non-stationary processes.

Suppose N is a point process on E = R whose mean measure p(A) = EN(A) is

finite for bounded A. Let A& denote the set of all counting measures on E.

The Campbell measure of N is a measure C on E x A defined by

C(A x M) = E[N(A)I(N E M)]. for A.M Borel sets in E. A.

This measure admits the disintegration

(5.6) C(A x M) = fA Pt (M)p(dt.).

where each P is a probability measure on AN (see §lO of Kallenberg(1983)).
t

The P t E R. are called the Palm probability distributions of N. This

definition is essentially that of Ryll-Nardzewski (1961) who gave a

theoretical basis for earlier versions of this notion. Note that expression

(5.6) is equivalent to

(5.7) Pt(M) = C(dt x M)/i(dt) E[N(dt)I(N E M)]/LN(dt).

We now restrict our attention to the case in which N is stationary and

simple with X E EN < o. 'Ten from the right-hand side of (5.6)., it follows

. . .
'- -. '



that P (M) = Po(O_tM), where 0tM = {O_tp: p E M) and t -t).
t 0 O) Mt (0_:LpEN)ard0i(A) (

A E S. That is, the P t's are translations of P Accordingly, the single P0

is called the Palm probability distribution of the stationary process N. In

this case, the preceding definition of P is expressed as0|

(5.8) Po(M) = (XlA) -I E[JA 1((OLN C M)N(dt)].

where JAl is the area of A C 9. The right-hand side is the same for each

A E 9. and so A = (0.1] is a typical choice. Another expression for the last

expectation is 2 P{OT N E M. Tn C A).
n n

Following a common convention, we let N = 2 6T o denote another point
n n

process on R. on some probability space, such that P{N ° E M} = Po(M) for each

M. This probability measure upon which N is based is not the same as the P

we have been using for N. The distinction between these probabilities should

be apparent from the events they measure. The N is interpreted as "N

conditioned that it has a point at 0" (the Palm version of N). This

interpretation is justified by the property

P{N°(a.b] = m} = lim P(N(a.b] = m I N(-h. 0] 1}.
h1O

Furthermore, note that P0 (p: p{O} = 1) = I or N{O() = I a.s. This follows

since using (F3.S) with A (0.1] and 0.. N(O) = N{T} = I a.s.. we have
n

P(N°(O} = I) = A 1  P( 0T N{O) = 1, Tn < 1)

n n

-l -l
=X 2 P(Tn < 1) = X N = 1.

n

Another feature of N0 is that it has stationary intervals (even though N does

not have stationary intervals). This statement is equivalent to

P0 (0TIM) = P0 (M), for each M, which one can prove using (5.8).

The following formulas relating P and P0 are useful for proving results

about N or N.

s1
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Campbell Formula. For 0: R x A R

(5.9) XE[O(t,N0 )] = E[JR 0(t.0tN)N(dt)]. "

provided these expectations exist. This follows from (5.5) when # is a

simple function and. for a general * (which is a limit of simple functions).

it follows by monotone convergence. A special case, for f: A - R . is

X E[f(NO)] = E[JO f(O N)dt].
0

Keep in mind that the expectation on the left is with respect to the

probability for N while the expectation on the right is with respect to the

probability for N. which is different.

Expressing P in Terms of P0 . For f: A -+ R+.

E[f(N)] = X E[f 0 .f(TtNO)dt] = X E[O T f(TtN ) dt].

In particular.

T
o
0

P{N E M) = A 0l 1(Tt No M)dt].

A special case is the Palm-Khinchine formula

0o

P(N(O.t] = m) = X f' p{NO(O's] = m) ds.

Also. letting F(t) = P{T1 0_ t}. we have (cf. Example 5.1)

(5.10) P(- To > u. T, > v} = 1 - A " [1 - F(t)]dt

P (-T - t) = P{T - t) = ' f [1 - F(s)]ds.

.Our next result is a convenient formula for the Palm probability of a

superposition of processes. Suppose N ..... Nn are independent, simple

stationary point processes on R with finite intensities A ..... n" Consider

their superposition N = N I+...+N n. Clearly N is stationary since it is of

the form N(A) =(X.A) where X E (N ..... Nn) is stationary (recall Example

5.2). and N is simple with rate A E Ai+. .+X since N it} 0 a.s. for each

j.t and the N1 .  N are independent.
n

%" % % % -
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Theorem 5.6. For ME.N.
n

(5.l1) P(N°EM) = X Axw/x) P( No + N M ),
j=l k j

where the N., N kej are independent.
j' k'

Interpretation. This says that No is distributed as N0 + I N with
k k

probability X./. j=l.....m (i.e. No is a "mixture" of these processes). The

Ni. Nk ksj on the right of (5.11) are defined on some probability space and
J

their distributions are the same as the original processes with the same

labels.

Proof. Two applications of the definition (5.S) and the stationarity of

N I Nn yield

P{N°EM) = X-  E[f l(Ot NEM)N(dt)]

(0.1]

X I {EE[ f 1(0 N + ON E M)N (dt) IN . kej]}

j=l (0,1] 
t  j k~j t k j*

n=X -  2. X. E[I(N . + :E 0tN k  E M).

j=1 k~jLk

n
A 2 X. P(N. + X Nk C M)/

j=l j k kj

Example 5.7. Suppose N ..... N are independent renewal processes with
-I -I

waiting time distributions F - , Fn that have means X .X n .'heir

superposition N = NI +''+Nn is stationary, but it will generally not be a

stationary renewal process. Theorem 5.6 and (5.10), however, tell us that

the TO and T I for N are such that

n

P(-T 0 > u. T lI > v) = (N/A) Fj(u)F i(v) 77 Ck.(u+v)
j =l k#ej

where C k(t) Nk ft[l-Fk ]d and F(t) = I -F(,).
0

%I
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6- POINT PROCCSFS QIARACTERIZED BY MARINCALES

We now discuss point processes on R+ whose evolutioh is characterized by

an increasing history of observed events or information. Here are some

motivating examples. Suppose N = (N t(R ) is a Poisson process on R with

t ++
t

mean measure A, = X Asds (following the convention of this area. we now use
0

A instead of A). One can interpret N as evolving over time and its evolution

or dynamics are given by

(6.1) E[dN t IFt_= Pud = = I F C_ } A d t + o(dt).

where dN t = N t - N t F o(N s . s < t), the a-field of the history of N up

to time t, and F is the history on [O.t). A more concise way of expressing

(6.1) is to say that the process M t  N t- A t E R + is an F t- martingale.

That is. E[=Mt I Fs Ms, s < t. which is equivalent to

t(6.2) E[Nt-N s- X du IF s :0.

As another example, suppose that N is a Cox process directed by A t = 0 ds

where X is a non-negative stochastic process. Then the evolution of N is

also characterized by (6.1). (6.2). where Xt is random and F = o(N S < L

A . u _ 0), the a-field of N up to t and the entire trajectory of X as well.U

For the final example, suppose that {Xt; t E R + } is a birth and death

queueing process with state space {O.1 .... ) and state-dependent arrival and

service rates a(n). 3(n). That is. when X t = n. the time to the next

-1
potential arrival is exponential with mean a(n) and the time to the next

-l
potential service completion is exponential with mean [3(n) Consider the

point process N of the number of customer arrivals up to time t. Again, the

evolution of N is characterized by (6.1). (6.2) with At = (Xt) and

F t - (X s <_ t). the history of X up to t. which also includes theft of N tip

% % % % e%U



to t. This is sometimes referred to as a state-dependent Poisson process

with random intensity A t (be careful with this loose terbinology since N is

generally not a Poisson or even a Cox process).

Such examples motivated the development of a general theory of point

processes with dynamics as above. The link between these point processes and

their associated martingales has led to a martingale calculus of point

processes, which is part of the modern stochastic calculus that deals with

integration with respect to Weiner processes. martingales or

semi-martingales. Point processes on R are special subnmrtingales or

semi-mar tingales.

Much of the current mathematical research on point processes deals with

this class of processes Little is known about these processes on R 2 or

other partially ordered spaces: see for instance Merzbach and Nualart (1986).

There are a number of results in this area, such as in filtering and optimal

dynamic control, that have potential applications in operations research.

Basic references are Bremaud (1981). Liptser and Shiryayev (1978). Ikeda and

Watanabe (1981). and Karr (1986). Unfortunately, we cannot get into these

lengthy topics. We will be content with introducing the basic notion of a

compensator and showing how it is used in Poisson limit theorems and

approximations.

6.1 Compensators of Point Processes

iF.

As one would expect, the stochastic process A appearing in the

nrtingale M t = N - A in the examples above plays an important role in
tt L

characterizing N. Such processes, called F -compensators of N. are the

subject of this subsection.

.IN



Let (Q. F, P) be a probability space. T'his will be the underlying space

for all of our processes. Let {Ft : tER } be a filtration or history on
t +

(Q. F): a family of sub-u-fields of F that are increasing (F C F . s<t). ,
s t

The F represents the information one observes up to time t. We assume, as 'a

usual, that F contains all P-null events and that F is right-continuous
0 t ..

(F = n F ). Suppose X - {Xt: tER } is a real-valued stochastic process on
t u t +

u>t

(12. F. P). The internal history of X is FX = G(X: s~t). the u-field of the
t 5

events of X up to time t. The X is F -adapted, if V C F for each t. The Xt t t

is F -predictable if it is F -adapted and each set ((t.W) E R x
-tt +

X t(t) ( x} is in the smallest u-field on R x 12 that contains the sets

(s t] x B, s < t. B E F . For our purposes, one can define X as being
s

F -predictable if it is F t-adapted and has left-continuous paths (sucht.".t

processes form a large class of predictable processes). The process X is

increasing if X(O) = 0 and its sample paths are nondecreasing and

right-continuous.

Consider a point process N = (N t tR+ } defined on (0, F. P) that is

F -adapted and has point locations T < T . with T a.s. For
t I 2 ~ n

convenience, we assume that each N has a finite mean (this allows us to use

martingales instead of more general local martingales). Then there is an

itcreasirug F -predictable process A = (A eCR such that, for each
t +

F -predictable process C = (C : C R

(G. I} (. ("dN1  I. (dA 3. d
L 0 t L

The A is unique up to P-null events. l'his process A is the I- -compens:ator

(or dual predictable project ion) of N. We somet imes call N zn i Vt- rJ)i n t

process with compensator A. lhe corndi I ion (6. I) holds if and only if t he

process M = N t A . t C R . is a martitnvalte. lie M is the process N

.-. ,. • ,. .. . .%~~~ %%'/% % ' h% % !, ., " / . . %'- .' % .' , .%- ,- .". .% .%. ,. ,



compensated by A. The representation N = M + A is the Doob-Meyer

decomposition of N (viewed as a submartingale). Keep in' mind that A depends

on the choice of Ft; the smallest possible F is N's internal history b i.
t t t

t

The A often has the form A = fX ds, where A = (N t E R is a

non-negative Ft-predictable process called the F stochastic intensity of N.
t -t

This intensity has the interpretation (6.1) and, in many cases.

A t = lim E[Nt+ h - NL IF ]/h.
h t

The process N is an F -Poisson process if. for each s < t N - N is a

Poisson random variable independent of F . The N has F -independent
5 -t

increments if for each s < t, N - N is independent of F .
.5 S

The following are some basic properties of compensators:

(i) N is an F -Poisson process if and only if A is deterministic and

con( inuous. In this case E[N -Ns Fs] = A t - A S. s < t.

(ii) N has F t-independent increments if and only if A is deterministic.

(iii) N has F -conditionally independent increments given . a sub-a-fieldt

of 1- 0 if anrd only if A is a '8-measurable function.

(iv) If A is a.s. continuous, then N is stochastically continous

(11(dN = 1} 0. t C R ).t+

(v) If X is an F t-predictable process with f Xs IdA t < - a.s.. t C R

then he poces Z =[0 
t]

then the3 process L t = X dM t C R is an F" -martingale.
[ot] 5 ' +

We have aready seen three examples of compensators of point processes in

the introduction. Ilere are two more.

-xample 6. 1. Renewal Processes and Some Relatives. Suppjse N is as ;bto)ve

with F= '4, V F1 where ¢ is some (-field , .. for the (ox process above.

G = r( : s C R +)). L~et Vn (x )  =~ r I' n < x I h I } T en I fe
s n+l n -

F2 -compensator of N is

I

i"



2t-T

n

At = AT  + [1 - F (x-)]- F (dx). 'r no ( T
n 0 rti - - + "

This resembles a hazard rate in reliability since dAT = dFn(t)/[l - F (t-)].
nn

In particular, if N is a renewal process with waiting time distribtitionn F and

Ft = F N. then the compensator is as above with the random F replaced by F.
t n

Example 6.2. Jump Times of Mnrkov Processes. Suppose X = (Xt; t C R+) is a

Markov process with countable state space X and transition rates q(x.y) (as

in Example 4.13). We assume that 0 < I q(x.y) < - and that X cannot take
ygx

an infinite number of jumps in a finite time interval. A variety of point

processes associated with jumps of' X can be modeled as follows. Consider the

point process N of times at which X jumps from some state x to another state

y where (x.y) are in the set J C X x X and J does not contain pairs (x.x).

That is.

N= l((X X ) J). tER
s<t

Then an easy check shows that the -X-compensator of N is

t

t
At = 2' q(x.y) l(Xs_ = x)ds t(R+.

0 (×.y )CTJ

''he X sonimy be replaced by X since X is stochastically contiriuous. These5- 5

point processes are useful for model init flows of customers in queucing

networks ;is we discuss later.

(ompensators for marked point processes are defined similarly. Suppose

N = 6 i is a marked point process on R x F such that the x)int

provess Nt = '1 n ( < t ) is as above. Then the compensa tor of N is ihe
1-I

uniite random measure A on R x F such that A (B) E A([0. t] x B) (R . isI+ilermo maueAo R t "

F t-predictable for each B C E and, for each predictable process C =C(tx):

(tx) c R x I}.

+e
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E[ Rf C(t.x) N(dtdx)] [ 1:f E(I.x) A(dtdx)jI.

6.2 Poisson Convergence and Approximtions.

Maniy properties of a point process on R+ can he expressed in terms of'

its compensator. For instance, one might expect that a sequence of' point

processes would converge in distribution if their compensators converge

appropriately. One such Poisson limit theorem is as follows. JIhis and other

limit theorems for processes with independent increments or conditional~ly

independent increments appear in Kabanov et. al. ( 1983). and Kabanov and

Liptser (198I) (they also discuss rmirked point processes).

n n n1Theorem 6.3. Let N be an 1: - point process orn R +with compenisat or A

n=1 .2......and let N be anu F t-Poisson process with (determinist ic cont inuous)

compensator A. It' A dA tf'or each t . then N ndN.

Mhe fol lowingi total var iat ion bounds aire useful for ifr~ilyzint4 rates of

c:onvergetnce in the preced i riv set i tig or for es tabl ishi ng Poissonl

'Approx imat ions . Suppose N'is a point process with F -in tens it y A' and N i s a1

Poisson process with F~ -intensity A *Let P' and P denote the probab iIi t y
t t t

distrihtions of' the respect ive processes N' and N on the intervatl [0. r]

(e. g. P t([B) = P(N E B where 13 is a lMrcl subset of' sample paths of' N on

[0. t]) 'The total variation distance between P' and P (recall 3.)is
tt

defined by d(P . Pt) = sup IP,(B) - Pt(R)
t t t

Totlal Variation Bounds 6.4.

Mi d(P- 1. P X) IdsfI 1
tS

i) If X ENV'. then

1 /2

d(P' . PO) VarA' (.
t t S0

% % A . .... ~ *A- AX . ~ . .~ .



(iii) Using the notation of §3.1.

d(N'. Nt)= 1/2 P(N' = - P(N = nt I 'd(P' ,  Pt).n=O t

Inequality (i) is proved in Brown (19,83) and aibanov et. al (1983).

1/2
Inequality (ii) follows from (i) since E N - EN <- Var A I  And (iii)

follows from the definitions.

Example 6.5. Poisson Approximations of jump Times of Mtarkov Processes.

Suppose. as in Example 6.2. that X is a Markov process and N' is the point

process of junps of X from x to y where (xy) C J. We observed that N' h61s

FX-intensity A' = Y q(\.y) l(X(t) = x). Assume that X is stationary
(x.y)EJ

with distribution vr(x) = P(X(t) = x). Let N be a Poisson process with

intensity X = EN t  I q(x.y)r(x). Then from Bound 6.4 (i). we have
t (x.y)CJ

d(P'. Pt) _ - q(x.y)EII(X(t) = x) - -(x)l
t t (x.y)CJ

= 2t Y q(xy)'(x)[l - r(x)].
(x.y)Icj

When the last sum is smull. then N' is close to being Poisson. A specific

illustration follows.

6.3 Customer Flows in a Jackson Queueing Network That are Approximtely

Poisson

We now assume that the Markov process above is an open Jackson queueing

network process defined as follows. Consider i network of .1 nodes

representing service stations. Customers enter the nodes I ...... from

oitside the network according to independent Poi sson processes withI

respective rates i ).......]. 1- 1ch node j operates as an isolat ed sitt Lglv

server whose service t imes :ire independent exporieit i il runiom va r iib les wi th

-1
mean Cu rs tomers are served one at a time, utnder Any priority scheme. A

customer. alfter being served at node ,w, goes immedi;itely to node k with

;.: . ,; .,, -, ..-. ~*-.**,.. *.,., .-. . - ... . .. . . . ., . .. : , . : . . . , .
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probability P ~k k=l. . or exits the network with probability p (
ik 

k=O

Pik = 1). Let X(t) = (X (t)..... X,(t)) denote the numbers of customers at

the respective nodes at time t. Then X is a Markov process with state spxice

{x =( . . . : x. = 0.1....} and transition rates

,- '. for y x +e.

q(x.y) = Pik y = x - e. + ek' X. > 1

{.PY = x - e. %

and q(xy) = 0 elsewhere, where e. is the vector with I in position j and O's.3

elsewhere.

Consider the routing probabilities jp.) j.k=O....J as a Markov nratrix.

where pok ) ./ t. Assume that this matrix is irreducible. Then there is

a unique solution a (I to the so-called traffic equations
SJ J
(1. = V. + s-,.,j~p.... ,l. .

,1 ! k- I k '

Namely. a 0  q 1/)Y (1. . q. (j - 1) where qo..... is the probability

distribution satisfying q = Pk. j=(). . This assumption ensures Ik --

that there is a positive probability (thlt each customer rniy reach any node.

We also assume that the traffic intensity ) 0r < I for each j. Thus

the network process X has the statiotury distribution n(x) = T (1 -
j= I

X..
x.

.j)p I- inally, assume that X is stationary.

Now. consider the point proce s

Ni (t) " l(X(s-) x. X(s) x ei + e.). t( R .

s(t x

of the number of limes customers move from tnioe i to node ,] in the t ime

.2;.,s 2,,' ',,.. , ,;, •, ".2. ,'. ""'.,'' ,' ,,-' .,".,, , ' .. ,,. ','. .,., .'', ' '/ .• ' - . -",:- ,/ "-',
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interval [O.t]. Similarly, let Nio(t) denote the number of times customers

exit the network from node i up to time t. Also considedr the process

N.(t) = 7 l(X(s-) = x, X(s) = x - e. or x - e. 4- e. for some i). t(R
s<t x ' j'

of the number of customer arrivals into node j up to time t. From 1--xample

6.2. we know that these processes have the respective bX-intensities

Xij (t) = l(Xi(t) l)0Pi and Aw(t) = v, + i l(X (t) ? I)Oi p .

Since X is stationary. it follows that N.. and N. are stationary with rates

F Xij(t) = pi ipij = aiPij

iI

E A .(t) + P + . ipp . = a..

It is well known that N ... N are independent Poisson processes (in
10Y JO

the usual sense when only their internal histories are observed and X is not)

with the respective rates apO U........ . is follows 'Ising filtering or a

reversibi lity ar ument: see for instance Breffuud (1981). Similarly. one canu

show that if I. J are two disjoint subsets of nodes such that from any node

in J a customer cannot reach a node in I. then (N.i iCI. j~j, are

independent Poisson processes with respective rates (nipi } .

We now consider N.. as an V t-point processes (i.e. X as well as N.. is
13 t13l..*

observed). (ur interest is in how close N.. is to being Poisson. I et d
1.1 1]

denote the total-variation distance between the distribution of N. ui d that

of a Poisson process with rate aP. . on [M.t]. Vhen by the Round 6.1 (i). we

have



t t

d <f . I EX. .j(s) -E X . (S)j ds

L 40 1ji E 
V 

(

-2t0.p .ip.(l - p.) 2ta ip. (l -p.).

Thus N..j will be approxima tely Poissonl when the traffic into i is light

(p. _ 0). the traffic into i is heavy (p.i'- 1). or the traffic between i and

j is light (a ip i.. 0)

t 4Similarly. let d. denote the total-variation distance between the
j%

distribution of N. and that of a Poisson process with rate a. on [0 t].

Then, as above. d. < 2t *.p p. I 4 Consequently, N. will be
- 1 1.1 i 1

approximately Poisson under the conditions above or when the network is large

anid the dispersion of customers via Oie p. 's is relatively even (the p. s
i jJ

are approximately equal and small). Brown and Pollett (19S2) discuss this

approximation and related ones for closed networks (they sometime use the

looser Bound 6A'(ii) instead of (i) for convenience).

.4

%-
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